Null, Column and Row Spaces

Related: Visit Section 2.8 clicking here

  1. Find Null space of A for the following matrix.   solution
  2. \(A=\left[\begin{array}{rrrrr}1 & 5 & -4 & -3 & 1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]\)


  3. Find the matrix \(A\) where \(\mathrm{Col} \, A = \left\{\left[\begin{array}{c}b-c \\ 2 b+c+d \\ 5 c-4 d \\ d\end{array}\right]: b, c, d \in \mathbb{R}\right\}\).   solution

  4. Let \(A=\left[\begin{array}{rrr}-8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4\end{array}\right]\) and \(\overrightarrow{w}=\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right] \). Determine if  \(\overrightarrow{w}\) is in \(\mathrm{Col} \, A \). Is \(\overrightarrow{w}\) in \(\mathrm{Nul} \, A\) ?    solution

  5. Find the bases for Null, Column and Row spaces of A. Given that \(B\) is row equivalent to \(A\) where  solution \[ A=\left[\begin{array}{rrrrr} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{array}\right],   B=\left[\begin{array}{rrrrr} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] \]

  6. Let \(M_{2 \times 2}\) be the vector space of all \(2 \times 2\) matrices, and define \(T: M_{2 \times 2} \rightarrow M_{2 \times 2}\) by \(T(A)=A+A^T\), where \(A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\).
    a. Show that \(T\) is a linear transformation.
    b. Let \(B\) be any element of \(M_{2 \times 2}\) such that \(B^T=B\). Find an \(A\) in \(M_{2 \times 2}\) such that \(T(A)=B\).
    c. Show that the range of \(T\) is the set of \(B\) in \(M_{2 \times 2}\) with the property that \(B^T=B\).
    d. Describe the kernel of \(T\).
  7. solution