Subspace of \(\mathbb{R}^n\)
- Determine which sets are bases for \(\mathbb{R}^2\) or \(\mathbb{R}^3\). Justify each answer. solution
(a) \(\left[\begin{array}{r} 3 \\ 1 \\ -2 \end{array}\right],\left[\begin{array}{r} 1 \\ -7 \\ 5 \end{array}\right] \)
(b) \(\left[\begin{array}{r}8 \\ -6 \end{array}\right],\left[\begin{array}{r} -4 \\ 3\end{array}\right]\)
(c) \(\left[\begin{array}{r} 1 \\ 5 \\ -2 \end{array}\right],\left[\begin{array}{r}5 \\ -7 \\ 4 \end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ 5 \end{array}\right], \left[\begin{array}{r}1 \\ 3 \\ -2 \end{array}\right]\)
(d) \(\left[\begin{array}{r}0 \\ 1 \\ -2 \end{array}\right],\left[\begin{array}{r}5 \\ -7 \\ 4 \end{array}\right],\left[\begin{array}{r}6 \\ 3 \\ 5 \end{array}\right]\)
- Determine if the vectors form a basis for \(\mathbb{R}^3\). solution
(a) \(\left[\begin{array}{l} 1\\ 1 \\
0\end{array}\right],\left[\begin{array}{l} 2 \\ 3 \\
0\end{array}\right],\left[\begin{array}{l}{1} \\ 2 \\
{3}\end{array}\right]\) (b) \(\left[\begin{array}{r} 1\\
2 \\
-1\end{array}\right],\left[\begin{array}{l} 2 \\1 \\
0\end{array}\right],\left[\begin{array}{r} 5 \\ 4\\ {-1}\end{array}\right]\)
(c) \(\left[\begin{array}{r} 1\\ 2 \\
-1\end{array}\right],\left[\begin{array}{r} 2 \\-1 \\ 0\end{array}\right]\)
- Find a basis for the null space of the matrix. solution
\(A=\left[\begin{array}{rrrrr}1
& 5 & -4 & -3 & 1 \\ 0 & 1 & -2 & 1
& 0 \\ 0 & 0 & 0 & 0 &
0\end{array}\right]\)
- Find a basis for the column space of the matrix. solution
\(A=\left[\begin{array}{rrrrr}
1 & 0 & -4 & -3 & 0 \\ 0 & 1 & 2 & 1
& 0 \\ 0 & 0 & 0 & 0 &1 \\ 0 & 0 & 0 & 0 &0
\end{array}\right]\)
- Assume that \(A\) is row equivalent to \(B\). Find bases for Nul A and
Col A. solution
\(A=\left[\begin{array}{rrrrr}
1 & 2 & -5 & 11 & -3 \\
2 & 4 & -5
& 15 & 2 \\
1 & 2 & 0 & 4 & 5 \\
3 & 6 & -5 & 19 & -2
\end{array}\right], \quad B=\left[\begin{array}{ccccr}1 &
2 & 0 & 4 & 5 \\ 0 & 0 & 5 & -7 & 8 \\ 0 & 0 & 0 & 0 & -9 \\ 0 & 0 & 0 & 0 &
0\end{array}\right] \)