Matrix Algebra

  1. Let \(A=\left[\begin{array}{rr}{2} & {-3} \\ {-4} & {6}\end{array}\right], B=\left[\begin{array}{ll}{8} & {4} \\ {5} & {5}\end{array}\right], \) and \(C=\left[\begin{array}{rr}{5} & {-2} \\ {3} & {1}\end{array}\right]\). Verify that \(A B = A C \) and yet \(B \neq C\).   solution

  2. Find the inverse of the matrix.    solution
  3. \(A=\left[\begin{array}{rr}{2} & {1} \\ {-1} & {2} \end{array}\right]\)

     

  4. Find the inverse of the matrix.   solution
  5. \( A=\left[\begin{array}{rrr}{-2} & {-4} & {-3}\\
    {1} & {2} & {4} \\
    {0} & {1} & {5}
    \end{array}\right]\)