Matrix Algebra
- Let \(A=\left[\begin{array}{rr}{2} & {-3} \\ {-4} & {6}\end{array}\right],
B=\left[\begin{array}{ll}{8} & {4} \\ {5} & {5}\end{array}\right], \) and
\(C=\left[\begin{array}{rr}{5} & {-2}
\\ {3} &
{1}\end{array}\right]\).
Verify that \(A B = A C \) and yet \(B \neq C\).
solution
- Find the inverse of the matrix.
solution
\(A=\left[\begin{array}{rr}{2} & {1} \\ {-1} & {2}
\end{array}\right]\)
- Find the inverse of the matrix.
solution
\( A=\left[\begin{array}{rrr}{-2} & {-4} & {-3}\\
{1} & {2} & {4} \\
{0} & {1} & {5}
\end{array}\right]\)