The Inverse of a Matrix
- Find the inverse of the matrix. solution
\( A=\left[\begin{array}{rr}{2} & {1} \\
{-1} & {2}
\end{array}\right]\)
- Find the inverse of the matrix.
solution
\( A=\left[\begin{array}{rrr}{-2} & {-4} & {-3}\\
{1} & {2} & {4} \\
{0} & {1} & {5}
\end{array}\right]\)
- (a) Suppose \((B-C)A=0,\) where B and C are \( m \times n \) matrices and \(A\) is invertible. Show that \( B=C. \)
(b) Suppose \(A\) is invertible. Then show that \( A^{-1}=(A^{T}A)^{-1}A^T. \)