Mark each statement True or False. Justify each answer.

- 1. For any scalar $c, \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$.
- 2. If the distance from \mathbf{u} to \mathbf{v} equals the distance from \mathbf{u} to $-\mathbf{v}$, then \mathbf{u} and \mathbf{v} are orthogonal.
- 3. If vectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$ span a subspace W and if \mathbf{x} is orthogonal to each \mathbf{v}_j for $j = 1, \ldots, p$, then \mathbf{x} is in W^{\perp} .
- 4. For any scalar c, $||c\mathbf{v}|| = c||\mathbf{v}||$.
- 5. If $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$, then \mathbf{u} and \mathbf{v} are orthogonal.
- 6. Not every linearly independent set in \mathbb{R}^n is an orthogonal set.
- 7. The orthogonal projection of y onto **v** is the same as the orthogonal projection of y onto $c\mathbf{v}$ whenever $c \neq 0$.