Gram-Schmidt Process
- Determine if the set of vectors is orthogonal and orthonormal. If a
set is only orthogonal, normalize the vectors to produce an orthonormal
set. solution
\[\left[\begin{array}{r}
-2/3 \\ 1/3 \\ 2/3
\end{array}\right],\left[\begin{array}{r}
1/3 \\
2/3 \\
0
\end{array}\right]\]
- The given set is a basis for a subspace \(W .\) Use the Gram-Schmidt process to produce an orthogonal basis for \(W\).
(a) \(\left[\begin{array}{l}0 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{r}5 \\ 6 \\ -7\end{array}\right]\) solution
(b) \(\left[\begin{array}{r}-1 \\ 3 \\ 1 \\ 1\end{array}\right], \left[\begin{array}{r}6 \\ -8 \\ -2 \\ -4 \end{array}\right], \left[\begin{array}{r}6 \\ 3\\ 6 \\ -3 \end{array}\right] \) solution
- Find an orthonormal basis of the subspace spanned by the vectors \(\left[\begin{array}{r}3 \\ 6 \\ 0\end{array}\right],\left[\begin{array}{c} 1 \\ 2 \\ 2 \end{array}\right]\). solution
- Factor the following matrix \(A\) as \( A=QR \) where the columns of \( Q \) are orthonormal vectors found by the columns of \(A \).
\(
A=\left[\begin{array}{rr}
3 & 1 \\
6 & 2 \\
0 & 2
\end{array}\right] \) solution