Linear Transformation
- Let \(T\) be defined by \(T(\vec{x})=A \vec{x}\). Find a
vector \(\vec{x}\) whose image under \(T\) is \(\vec{b},\) and
determine whether \(\vec{x}\) is unique. solution
\(A=\left[\begin{array}{rrr}{1} & {0} & {-2} \\ {-2} &
{1} & {6} \\ {3} & {-2} & {-5}\end{array}\right],
\quad \vec{b}=\left[\begin{array}{r}{-1} \\ {7} \\
{-3}\end{array}\right]\)
- Let \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}\) be a linear
transformation such that \(T\left(x_{1},
x_{2}\right)=\left(x_{1}-2 x_{2}, -x_{1}+3 x_{2}, 3 x_{1}-2
x_{2}\right) \). Find \(\vec{x}\) such that \(T(\vec{x})=(-1,4,9)
\). solution
- Let \(S\) be defined on \(\mathbb{R}^2\) by \(S \left(x_{1}, x_{2}\right)=\left(x_{1} + x_{2}, x_{1} + 1 \right) \). Is \(S\) a linear transformation? solution
- Let \(T\left(x_{1}, x_{2}\right)=\left(2x_{1} - x_{2}, x_{1}+ 3
x_{2}, 5 x_{1} - 2 x_{2}\right) \). Show that \(T \) is a
one-to-one linear transformation. Does \(T\) map \(\mathbb{R}^{2}
\) onto \(\mathbb{R}^{3}\)? solution
- Let \(T\) be the linear transformation whose standard matrix is
given. Decide if \(T\) is a one-to-one mapping. Also decide
if \(T\) maps \(\mathbb{R}^4\) onto \(\mathbb{R}^4\). solution
\(\left[\begin{array}{cccc}{7} & {5} & {4} & {-9} \\
{10} & {6} & {16} & {-4} \\ {12} & {8} & {12}
& {7} \\ {-8} & {-6} & {-2} &
{5}\end{array}\right]\)