Vector Spaces and Subspaces
- Check if the set \(H=
\left\{\begin{bmatrix}3s\\2s\\3s-2\end{bmatrix}: s \in \mathbb{R}\right\}\) is a subspace of \(\mathbb{R}^3
\). Justify your answer.
- Is the following set a subspace of \(\mathbb{P}_2\). All polynomials of the form \(p(t)=a+bt^2\), where \(a, b\in \mathbb{R}\).
- Determine if the set \(H\) of all matrices of the form \(\left[\begin{array}{ll}a & b \\ 0 & -a\end{array}\right]\) is a subspace of \(M_{2 \times 2}\), the vector space of all \(2\times 2\) matrices.