Linear Independence and Basis
- Determine if the vectors form a basis for \(\mathbb{R}^3\). solution
(a) \(\left[\begin{array}{l} 1\\ 1 \\
0\end{array}\right],\left[\begin{array}{l} 2 \\ 3 \\
0\end{array}\right],\left[\begin{array}{l}{1} \\ 2 \\
{3}\end{array}\right]\) (b) \(\left[\begin{array}{r} 1\\
2 \\
-1\end{array}\right],\left[\begin{array}{l} 2 \\1 \\
0\end{array}\right],\left[\begin{array}{r} 5 \\ 4\\ {-1}\end{array}\right]\)
(c) \(\left[\begin{array}{r} 1\\ 2 \\
-1\end{array}\right],\left[\begin{array}{r} 2 \\-1 \\ 0\end{array}\right]\)
- Find a basis for the set of vectors in \(\mathbb{R}^{2}\) on the line
\(y = 3x\). solution
- Assume that \(A\) is row equivalent to \(B\). Find bases for Nul A and
Col A. solution
\(A=\left[\begin{array}{rrrrr}
1 & 2 & -5 & 11 & -3 \\
2 & 4 & -5
& 15 & 2 \\
1 & 2 & 0 & 4 & 5 \\
3 & 6 & -5 & 19 & -2
\end{array}\right], \quad B=\left[\begin{array}{ccccr}1 &
2 & 0 & 4 & 5 \\ 0 & 0 & 5 & -7 & 8 \\ 0 & 0 & 0 & 0 & -9 \\ 0 & 0 & 0 & 0 &
0\end{array}\right] \)
- Find a basis for the space spanned by the given five vectors. solution
\(\left[\begin{array}{l}1 \\ 0 \\ 0 \\
1\end{array}\right],\left[\begin{array}{r}-2 \\ 1 \\ -1 \\
1\end{array}\right],\left[\begin{array}{r}6 \\ -1 \\ 2 \\
-1\end{array}\right],\left[\begin{array}{r}5 \\ -3 \\ 3 \\
-4\end{array}\right],\left[\begin{array}{r}0 \\ 3 \\ -1 \\
1\end{array}\right]\)
- Let \(\overrightarrow{v}_{1}=\left[\begin{array}{r}7 \\ 4 \\ -9 \\
-5\end{array}\right], \:
\overrightarrow{v}_{2}=\left[\begin{array}{r}4 \\ -7 \\ 2 \\
5\end{array}\right], \: \overrightarrow{v}_{3}=\left[\begin{array}{r}1 \\ -5
\\ 3 \\ 4\end{array}\right] .\) It can be verified that
\(\overrightarrow{v}_{1}-3 \overrightarrow{v}_{2}+5
\overrightarrow{v}_{3}=\overrightarrow{0} .\) Use this information to find a
basis for \(H=\operatorname{Span}\left\{\overrightarrow{v}_{1},
\overrightarrow{v}_{2}, \overrightarrow{v}_{3}\right\}\). solution
- The first four Hermite polynomials are \(1, 2t, -2+4t^2,-12t+8t^3\). These polynomials arise naturally in the study of certain important differential equations in mathematical physics.
Show that the first four Hermite polynomials form a basis of \(\mathbb{P}_{3}\). solution
- The first four Laguerre polynomials are \(1, 1-t, 2-4t+t^2,6-18t+9t^2-t^3\). Show that these polynomials form a basis of \(\mathbb{P}_{3}\). solution
- Assume that the matrix A is row equivalent to B. Without calculations, list rank A and dim Nul A. Then find bases for Col A,
Row A, and Nul A. solution
\( A=\left[\begin{array}{rrrrr}1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0\end{array}\right], B=\left[\begin{array}{rrrrr}1 & -3 & 0 & 5 & -7 \\ 0 & 0 & 2 & -3 & 8 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]\)
-
Problems related to Rank, Col A, Nul A, Row A. solution