- Is \( \left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]\) an eigenvector of \(\left[\begin{array}{lll}3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5\end{array}\right]\) ? If so, find the eigenvalue. solution
- Find a basis for the eigenspace corresponding to the given eigenvalue. \( \quad A=\left[\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right], \: \lambda=4. \quad \) solution
- Find a basis for the eigenspace corresponding to the given eigenvalue. \( \quad A=\left[\begin{array}{rrr}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right], \: \lambda=1. \quad \) solution
- Find the eigenvalues and eigenvectors of \( \quad A=\left[\begin{array}{rr} 2 & 3 \\ 3 & -6\end{array}\right] \quad \) solution
- Find the eigenvalues and eigenvectors of \( \quad A=\left[\begin{array}{cc}5 & 3 \\ 4 & 4\end{array}\right] \quad \) solution
- Without calculation find eigenvalue(s) of the following matrices. solution
\(A=\left[\begin{array}{rrr}4 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 1 & 3\end{array}\right], \quad B=\left[\begin{array}{rrr}3 & 2 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & -5\end{array}\right] \)
- Show that if \(A=QR\) with \(Q\) invertible, then \(A\) is similar to \(A_1=RQ\). Proof
- Show that if A and B are similar matrices, then det(A) = det(B). Proof
- Find the eigenvalues of \(A = \left[\begin{array}{rrr}5 & -2 & 3 \\ 0 & 2 & 0 \\ 6 & 7 & -2\end{array}\right].\quad\) solution
- Find the eigenvalues and eigenvectors of \(A = \left[\begin{array}{rrr} 1 & 0 & 3 \\ -3 & 4 & 1 \\ 0 & 0 & 2\end{array}\right].\quad\) solution