Diagonalization
- Use the factorization \(A=PDP^{-1}\) to compute \(A^{k}\), where \(k\) represents an arbitrary positive integer. solution
\(\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]=\left[\begin{array}{rrr}1 & 1 & 2 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]
\left[\begin{array}{rrr}1 / 4 & 1 / 2 & 1 / 4 \\ 1 / 4 & 1 / 2 & -3 / 4 \\ 1 / 4 & -1 / 2 & 1 / 4\end{array}\right]\)
- Diagonalize the matrix, if possible: \(A=\left[\begin{array}{rr}3 & -1 \\1 & 5 \end{array}\right]\). solution
- Determine if the matrix is diagonalizable: \(A=\left[\begin{array}{rr}3 & 1 \\3 & 5 \end{array}\right]\). solution
- Diagonalize the matrix, if possible: \(A=\left[\begin{array}{rrrr}5 & 0 & 0 \\ 0 & 5 & 0 \\ 1 & 4 & -3 \end{array}\right]\). solution
- Diagonalize the matrix, if possible: \(A=\left[\begin{array}{rrr} 0 & -4 & -6 \\ -1 & 0 & -3 \\ 1 & 2 & 5 \end{array}\right]\), given that the eigenvalues of \(A\) are \(1, 2\). solution