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Mechanical and Electric Vibrations

One of the reasons why second order linear equations with
constant coeffcients are worth studying is that they serve as
mathematical models of some important physical processes.

Two important areas of application are the fields of mechanical
and electrical oscillations.

For example, the motion of a mass on a vibrating spring, the
torsional oscillations of a shaft with a flywheel, the flow of electric
current in a simple series circuit etc.
Most physical problems are all described by the solution of an
initial value problem of the form

ay ′′ + by ′ + cy = g(t), y(0) = y0, y ′(0) = y1

This illustrates a fundamental relationship between mathematics
and physics: many physical problems may have the same
mathematical model.
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We will study the motion of a mass on a spring in detail because
understanding the behavior of this simple system is the first step in
the investigation of more complex vibrating systems.

Further, the principles involved are common to many problems.

Consider a mass m hanging at rest on the end of a vertical spring
of original length l , as shown in the figure.

The mass causes an elongation L of the spring in the downward
(positive) direction. In this static situation there are two forces,
weight = mg and force due to spring, Fs = −kL (given by Hooke’s
Law). See the second figure. Note that k is the spring constant,
and the minus sign is due to the fact that the spring force acts in
the upward (negative) direction. (mg = −kL)
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We study the motion of the mass when it is acted on by an
external force or is initially displaced.

Let u(t), measured positive

downward, denote the displacement of the mass from its
equilibrium position at time t. See figure below.

Then u(t) is related to the forces acting on the mass through
Newton’s law of motion mu′′(t) = f (t), where u′′ is the
acceleration of the mass and f is the net force acting on the mass.

In this dynamic problem there are now four separate forces that
must be considered as given in the next page.
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1 Gravity: The weight w = mg of the mass always acts
downward.

2 Spring: The spring force Fs is assumed to be proportional to
the total elongation L+ u of the spring and always acts to
restore the spring to its natural position. Fs = −k(L+ u).

3 Damping: The damping or resistive force Fd always acts in
the direction opposite to the direction of motion of the mass.
Fd = −γu′(t). This force may arise from several sources:
resistance from the air or other medium in which the mass
moves, internal energy dissipation due to the extension or
compression of the spring, friction between the mass and the
guides (if any) etc.

4 External forces: An applied external force F (t). This could be
a force due to the motion of the mount to which the spring is
attached, or it could be a force applied directly to the mass.
Often the external force. is periodic.
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Taking account of these forces, we can now rewrite Newton’s law
mu′′(t) = f (t) as

mu′′(t) = mg + Fs(t) + Fd(t) + F (t)

mu′′(t) = mg − k[L+ u(t)]− γu′(t) + F (t)

mu′′(t) = mg − kL− ku(t)− γu′(t) + F (t)

mu′′(t) + γu′(t) + ku(t) = mg − kL+ F (t)

mu′′(t) + γu′(t) + ku(t) = F (t) since mg − kL = 0

The complete formulation of the vibration problem requires that
we specify two initial conditions,namely, the initial position u0 and
the initial velocity v0 of the mass:

u(0) = u0, u′(0) = v0.
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We have the formulas:

IVP: mu′′(t) + γu′(t) + ku(t) = F (t) u(0) = u0, u
′(0) = v0.

mass: m = w
g

damping coefficient: γ = Fd
u′ ,

spring constant: k = mg
L .
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Example 1

A mass weighing 4 lb stretches a spring 2 in. Suppose that the
mass is given an additional 6 in displacement in the positive
direction and then released. The mass is in a medium that exerts a
viscous resistance of 6 lb when the mass has a velocity of 3 ft/s.
Under the assumptions discussed in this section, formulate the
initial value problem that governs the motion of the mass.

No external forces mentioned, so F (t) = 0.
mass, m = 4/32
damping coefficient, γ = 6/3
spring constant, k = 4/(1/6).
IVP: mu′′(t) + γu′(t) + ku(t) = F (t), that is, (you find this)
initial conditions:
u(0) = 6/12, u′(0) = 0 (released with no velocity)
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