Separable Ordinary Differential Equations:
Solve the following differential equations or IVP.
- \( \displaystyle{(x+1)\frac{dy}{dx}=xy}\)
solution
- \( \displaystyle{\frac{dy}{dx}+y^2\sin (x) = 0}\)
solution
- \( \displaystyle{\frac{dy}{dx}= \cos^2 (x)\, \cos^2 (2y)} \)
solution
- \(\displaystyle{x \frac{dy}{dx} = (1-y^2)^{1/2}} \)
solution
- \( \displaystyle{x\frac{dy}{dx}=\cos(\ln x) }\)
solution
- \( \displaystyle{(x^2-9) \frac{dy}{dx} +x y = 0} \)
solution
- \( \displaystyle{(y^2+1) dx = y \sec^2(x) dy} \)
solution
- \( \displaystyle{\frac{dy}{dx} = y^2-4} \) solution
- \(\displaystyle{x^2\frac{dy}{dx}=\sec^2(1/x) }\)
solution
- \(\displaystyle 2x^2\frac{dy}{dx}=\frac{\sin\left(\frac{1}{x}\right)}{e^{2y}}\) solution
- \(\displaystyle{x\frac{dy}{dx}=1+y^2, \: y(-1)=1 }\)
solution
- \( \displaystyle{\frac{dy}{dx}- (\sin x) y = 2 \sin x, \:
y(\pi/2)=1}\) solution
- \(\displaystyle{e^{-x^2}\frac{dy}{dx} = \frac{x}{y}, \: y(0)=-2}\) solution
- Find the solution of the given initial value problem (IVP) in explicit form and determine the interval in which the solution is defined.
(a) \( \displaystyle{\frac{dy}{dx}=\frac{1-2x}{y}}, \: y(1)=-2\) solution
(b) \(\displaystyle{\frac{dr}{d\theta}= r^2 /\theta, \: r(1)=2}\) solution
(c) \(\displaystyle{\frac{dy}{dx} = xy^3(1+x^2)^{-1/2}, \: y(0)=1}\) solution
- Solve the ODE by making a suitable substitution. solution
\(\displaystyle{\dfrac{dy}{dx}=(x+y)^2} \)