Separable Ordinary Differential Equations:
Solve the following differential equations or IVP.
- \( \displaystyle{(x+1)\frac{dy}{dx}=xy}\)
solution
- \( \displaystyle{\frac{dy}{dx}+y^2\sin (x) = 0}\)
solution
- \( \displaystyle{\frac{dy}{dx}= \cos^2 (x)\, \cos^2 (2y)} \)
solution
- \(\displaystyle{x \frac{dy}{dx} = (1-y^2)^{1/2}} \)
solution
- \( \displaystyle{x\frac{dy}{dx}=\cos(\ln x) }\)
solution
- \( \displaystyle{(x^2-9) \frac{dy}{dx} +x y = 0} \)
solution
- \( \displaystyle{(y^2+1) dx = y \sec^2(x) dy} \)
solution
- \( \displaystyle{\frac{dy}{dx} = y^2-4} \) solution
- \(\displaystyle{x^2\frac{dy}{dx}=\sec^2(1/x) }\)
solution
- \(\displaystyle 2x^2\frac{dy}{dx}=\frac{\sin\left(\frac{1}{x}\right)}{e^{2y}}\) solution
- \(\displaystyle{x\frac{dy}{dx}=1+y^2, \: y(-1)=1 }\)
solution
- \( \displaystyle{\frac{dy}{dx}- (\sin x) y = 2 \sin x, \:
y(\pi/2)=1}\) solution
solution II