A. Solve each linear differential equation.
- \(\displaystyle{\frac{dy}{dx}-2y=4+e^{3x}}\) solution
- \(\displaystyle{x\frac{dy}{dx}- 4y=x^6e^x, \quad x>0}\) solution
- \( \displaystyle{(x+1)\frac{dy}{dx}+(x+2)y = 2xe^{-x}, \quad x>-1}\) solution
- \( \displaystyle{\frac{dr}{d\theta}+r\sec \theta = \cos\theta}, \quad 0 < \theta < \pi/2 \) solution
- \( \displaystyle{x^2y'+xy=1}, \quad x > 0 \) solution
- \( \displaystyle{\frac{dy}{dt}+\frac{1}{t} y = \cos t}, \quad t >0 \) solution
- \( \displaystyle{x\frac{dy}{dx}- y = x^2\,\sin x}, \quad x>0 \) solution
B. Solve the following initial value problems (IVP).
- \(\displaystyle{x\frac{dy}{dx}+2y=\frac{\sin x}{x}, \: y(\pi)=0, x > 0}\) solution
- \( \displaystyle{\frac{dy}{dx}- (\sin x) y = 2 \sin x, \quad y(\pi/2)=1}\) solution