Exact Equations:
1. Determine whether each of the equations is exact. If it is exact,
find the solution.
(a) \( \displaystyle{(2xy^2+2y) \, dx + (2x^2y+2x) \, dy = 0}\) solution
(b) \( \displaystyle{\left(1+\ln x + \frac{y}{x}\right) -(1-\ln x)\, y'=0}\) solution
(c) \( \displaystyle{ (\sin y - y \sin x)\, dx + (\cos x + x \cos y - y) \, dy = 0 }\) solution
(d) \( \displaystyle{ (e^x \sin y - 2 y \sin x) + (e^x\cos y + 2 \cos x)\, \frac{dy}{dx} = 0 }\) solution
2. Find the value \(k\) so that the following equation is exact, then find the general solution. solution
\( \displaystyle{ (5x+ky)\,dx + (4x-3y)\, dy = 0 }\)