Second order non-homogeneous linear diff equations:

(Method of Undetermined Coefficients)  Lecture 1    Lecture 2    Lecture 3

1. Find the general solution of the diff equations.

  a.  \( y''-3y'+2y=5e^{3t} \)  solution

  b.  \( y''-3y'+2y=5e^{t} \)   solution

  c.  \( y''+2y'-3y=10e^{-3t} \)    solution

  d.  \( y''+4y=\sin(2t) \)    solution

  e.  \( y''+4y'+4y=3t^2-1 \)   solution

 

2. SET UP the correct form for the particular solution, \( y_p(t)\). DO NOT solve for the coefficients.

  a.  \( y''-3y'+2y=5e^{t}+3t \)  solution

  b.  \( y''-3y'=\cosh(3t)-5 \)   solution

  c.  \( y''+4y=e^{2t}\sin(2t) \)  solution

  d.  \( y''+5y'-6y=3^{-t} \)   solution   (Note: \(3^{-t} = e^{(-\ln 3) t}\))

  e.  \( y''- (\ln 2)y'=2^t \)   solution 

  f.   \( y''-y'-2y=\cosh (2t) \)  solution

  g.  \( y''-6y'+58y=t^2e^t \cos 2t\)  solution

  h.  \( y''-10y'+25y=\cos 3t + t\, e^{5t}\)   solution

 

3. Find the solution of the given initial value problem.

   a.  \( y''+ y'- 2y= 2t, \quad   y(0)=0, \: y'(0)=1 \)   solution

   b.  \( y''+4y=3\cos(2t), \quad    y(0)=2, \: y'(0)=-1 \)   solution