Vector Valued Functions
1. Find the following limit: \(\displaystyle{\lim_{t \to e^2}
\left \langle t\ln(t), \frac{\ln t}{t^2}, \sqrt{\ln(t^2)}\right \rangle}
\) solution
2. Find the domain of the vector-valued function.
\({\bf r}(t) = \langle t^2, \tan t, \ln t \rangle \)
solution
3. Eliminate the parameter t, write the equation in Cartesian
coordinates, then sketch the graphs of the vector-valued functions.
solution
(a) \( {\bf r}(t) = t^3 \, {\bf i} + 2t \, {\bf j} \)
(b)
\( {\bf r}(t) = 2 \cos t \, {\bf i} + 2 \sin t \, {\bf
j} \)