Vector Valued Functions

1. Find the following limit:  \(\displaystyle{\lim_{t \to e^2} \left \langle t\ln(t), \frac{\ln t}{t^2}, \sqrt{\ln(t^2)}\right \rangle} \)    solution

 

2. Find the domain of the vector-valued function.   \({\bf r}(t) = \langle t^2, \tan t, \ln t \rangle \)    solution

3. Eliminate the parameter t, write the equation in Cartesian coordinates, then sketch the graphs of the vector-valued functions.    solution

(a)  \( {\bf r}(t) = t^3 \, {\bf i} + 2t \, {\bf j} \)             (b)  \( {\bf r}(t) = 2 \cos t \, {\bf i} + 2 \sin t \,  {\bf j} \)