Triple Integrals in  Spherical Coordinates:

 

1. Evaluate \( \displaystyle{ \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} \: \: e^{(x^2+y^2+z^2)^{3/2}} \,\, dz \, dy\, dx} \)   solution

 

2. Evaluate \(\displaystyle{ \int_{-3}^3 \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{0}^{\sqrt{9-x^2-y^2}} \sqrt{x^2+y^2+z^2} \,\, dz \, dy\, dx} \)   solution

 

3. Evaluate \( \displaystyle{ \iiint_B (x^2+y^2+z^2) dV}\), where \(B\) is the portion of the unit ball in the first octant.   solution

 

4. Rewrite the following (do not evaluate) triple integral in spherical coordinates \( \displaystyle{ \iiint_E  y^2 \, dV}\), where \(E\) is the solid hemisphere \(x^2+y^2+z^2 \le 9, \: y \ge 0 \).  solution

 

 

5. Convert \(\displaystyle{  \int_0^3 \int_0^{\sqrt{9-y^2}}\int_{\sqrt{x^2+y^2}}^{\sqrt{18-x^2-y^2}} (x^2+y^2+z^2) \, dz\,dx\,dy}\) into spherical coordinates.  solution

 

6. Rewrite the following (do not evaluate) triple integral in spherical coordinates \(\displaystyle{  \iiint_S (x+y+z) \, dV} \)  where \( S\) is the solid region above the cone \(z=\sqrt{3x^2+3y^2}\) and inside the sphere \(x^2+y^2+z^2=16\).  solution