Maximum and Minimum Values
1. Find all critical points of the function: \( \displaystyle{
f(x,y)=2x^2+y^2+2xy+2x+2y-5}\)
solution
2. Find all critical points of the function: \(
\displaystyle{ f(x,y)=2x^3+xy^2+5x^2+y^2+2}\)
solution
3. Use the second derivative test to identify any critical points
and determine whether each critical point is a maximum, minimum, saddle
point, or none of these for the function \(\displaystyle{\quad
f(x,y) =3x^2+8y^3+12x-12y^2+10 }\)
solution
4. Find the local maximum and minimum values and saddle point(s)
of the function. \(\quad \displaystyle{ f(x,y)=x^3+y^3-3x^2-3y^2-9x+10}\).
solution
5. Find the absolute extrema of the function \(
\displaystyle{f(x,y)=2x^3+y^4} \) on the set \(
\displaystyle{D=\{(x,y) | x^2+y^2 \leq 1 \}}\).
solution
6. Find the absolute extrema of the function \(\:
\displaystyle{f(x,y)=xy-x-2y+2} \) on the triangular region \(R\) with
vertices \( (0,0), \, (4, 0) \, \) and \((0,4)\).
solution
7. A cardboard box without a lid must have a volume of \(23,328\,
cm^3\) . Find the dimensions that minimize the amount of cardboard used.
solution