Green's Theorem:

 

1. Evaluate the line integral \( \displaystyle{\oint_C y\,e^x \, dx + 4\, e^x\, dy }\),  where  \( C \)  is the positively oriented rectangle with vertices (0, 0), (2, 0), (2, 3) and (0, 3).  solution

 

2. Evaluate the line integral \( \displaystyle{\oint_C \vec{F}\cdot \vec{dr} }\), where \( \vec{F}(x,y)=\langle xy, x^2y^3\rangle \) and  \( C \)  is the positively oriented triangle with vertices (0, 0), (1, 0), and (1, 2).   solution

 

3. Evaluate the line integral \( \displaystyle{\oint_C xy^2\, dx + 4x^2 y \, dy}\), where \( C \)  is the positively oriented triangle with vertices (0, 0), (2, 2), and (2, 4).    solution

 

4. Find the work done by the force \( {\bf F} = \langle x^2+xy, y+xy^2 \rangle\) in moving an object from (0, 0) to (1, 1) along the curve \(y = x^3\), then back to the origin along the line \(y=x\).   solution

 

5. Evaluate the integral \( \displaystyle{\oint_C -2y^3\, dx + 2x^3 \, dy }\), where \(C\) is the circle \(x^2+y^2=9\).   solution