Functions of two variables 

 1. Find the domain and range of each function.    solution

(a) \(\displaystyle{f(x,y)= 2x + 3y-5} \)     (b) \(\displaystyle{g(x,y) = \sqrt{4-x^2-y^2}} \)  

 

 2. Find the domain of each function.     solution

(a) \( \displaystyle{f(x,y)=\frac{y-3}{\sqrt{x+y-2}}}\)     (b) \(\displaystyle{g(x,y) = \frac{\ln(y-x^2)}{x+2}} \)  

 

3. Draw a contour map of the function showing several level curves.  

(a) \( f(x,y)=x^2 - y^2 \)    solution        (b)  \(g(x,y)=\ln(x^2+y^2) \)   solution