Double Integrals over Rectangular Regions
1. Calculate the iterated integral.
(a) \(\displaystyle{ \int_1^4 \int_0^2 (6x^2y-2x)y \,dy\, dx} \)
solution
(b)
\(\displaystyle{ \int_0^{\pi/6} \int_0^{\pi/2} (\sin x + \sin y) \,dy\, dx} \)
solution
(c)
\(\displaystyle{ \int_1^{4} \int_1^{5} \frac{\ln y}{xy} \,dy\, dx} \)
solution
(d) \(\displaystyle{ \int_1^e \int_1^{2} x^2 \ln x \,dy\, dx} \)
solution
2. Evaluate \(\displaystyle{ \iint_R x e^{xy}\, dA} \), where
\(\displaystyle{R=[0, 1]\times[0,1]} \).
solution
3. Find the average value of the function \(
\displaystyle{f(x,y)=x^4+2y^3}\) over the rectangle
\(\displaystyle{R=[1, 2]\times[2,3]} \).
solution
4. Compute \(\displaystyle \iint_R \cos(x+y)\,dA\), where \(R\) is the
rectangle in the \(xy\)-plane determined by the inequalities \(0\le x\le
\frac{\pi}{6}\) and \(0 \le y \le \frac{\pi}{2}\).
solution