Double Integrals in Polar Coordinates
1. Evaluate the integral \(\displaystyle{ \iint_R 4x \, dA} \)
over the region region \( R=\{(r,\theta): 1 \leq r \leq 2, 0 \leq \theta
\leq \pi/2\}\). solution
2.
Evaluate \(\displaystyle{ \iint_R 2xy \, dA} \),
where \( R \) is the portion of the annular region \(4 \leq x^2+y^2\leq
25\) that lies in the first quadrant.
solution
3. Evaluate \(\displaystyle{ \int_2^3 \int_0^x \frac{x}{\sqrt{x^2+y^2}} \, dy\, dx} \)
solution
4. Evaluate \(\displaystyle{ \int_0^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} (x^2+y^2)^2 \, dx\, dy} \)
solution
5.
Find the volume of the solid bounded by the paraboloid \(z =
16-3x^2-3y^2\) and the plane \( z = 4\).
solution
6.
Find the area enclosed by one loop of the four-leaved rose \( r =
\cos(2\theta) \).
solution