Double Integrals over General Regions
1.
Evaluate \(\displaystyle{ \iint_D (2x+6y^2)\, dA} \),
where \( D \) is the region bounded by the parabola \(y=x^2\) and
the line \(y=1\).
solution
2.
Evaluate \(\displaystyle{ \iint_D x \cos y \, dA} \),
where \( D \) is the region bounded by \(y=0, \: y=x^2\), and
\(x=2\). solution
3.
Evaluate \(\displaystyle{ \iint_D x^2 e^{xy} \, dA} \), where
\( D \) is the triangle with vertices \((0,0), (2,1) \) and \((0,1)\).
solution
4.
Find the volume of the solid that lies under the elliptic paraboloid \(
\displaystyle{f(x,y) = 3x^2+y^2}\) and above the region \(D\) bounded by
\( x = y \) and \( x = y^2-2 \).
solution
5.
Evaluate the integral \(\displaystyle{\int_0^1\int_{2y}^2 e^{x^2} \, dx
\, dy} \)
solution
6. Evaluate the integral \(\displaystyle{\int_0^{1/4} \int_{\sqrt{x}}^{1/2}\frac{e^y}{y} \, dy
\, dx} \)
solution
7. Sketch the region of integration and reverse the order of
integration for the following double integral.
solution
\[ \int_0^{27}
\int_{\sqrt[3]{x}}^2 f(x,y) \, dy\,dx \]