The Dot Product

 

1. Let \({\bf a} = \langle 1, -2, 3 \rangle \),  \({\bf b } = \langle 4, 0, -1 \rangle \), and  \({\bf c} = \langle 2, 4, -5 \rangle \).  Find  (i)  \( ({\bf a \cdot b})\bf c\),  (ii) \({\bf b}\cdot (2\bf a) \), (iii) \(\|\bf c\|^2 \).    SOLUTION

 

2. Let \(\overrightarrow{v}=3\overrightarrow{i}-5\overrightarrow{j}\) and \( \overrightarrow{w}= -2\overrightarrow{i} + 3\overrightarrow{j}\). Find (a) \( ||\overrightarrow{v}-\overrightarrow{w}||\), and (b) \(||\overrightarrow{v}||+||\overrightarrow{w}||\).    SOLUTION

 

3. Let \(\overrightarrow{v}=2\overrightarrow{i} - 3\overrightarrow{j}\) and \(\overrightarrow{w}= -3\overrightarrow{i}+ 4\overrightarrow{j}\). Find  (a) \( ||\overrightarrow{v}-\overrightarrow{w}||\), and (b) \(||\overrightarrow{v}||-||\overrightarrow{w}||\).    SOLUTION

 

4. Find the angle between the given vectors, and state whether they are parallel, orthogonal or neither.    SOLUTION

  \(\overrightarrow{u}=2\overrightarrow{i}+ \overrightarrow{j}, \quad \overrightarrow{v}=\overrightarrow{i} - 2\overrightarrow{j}\)

 

5. Find the angle between the given vectors, and state whether they are parallel, orthogonal or neither.     SOLUTION

  \(\overrightarrow{u}=2\overrightarrow{i}-5 \overrightarrow{j}, \quad \overrightarrow{v}=4\overrightarrow{i} - 10\overrightarrow{j}\)

 

6. Let \({\bf a} = \langle 3, -1, 2 \rangle \) and \({\bf b} = \langle 1, -1, -2 \rangle \) be given. Find the measure of the angle between them.  SOLUTION

 

7. Let \({\bf a} = \langle 1, 2, 2\rangle \). Find the measure of the angle (in radians) formed by \(\bf a \) and \(\bf j \).   SOLUTION

 

8. Let \({\bf u} = \langle 5, -3, 2 \rangle \) and \({\bf v} = \langle 2, 2, -1 \rangle \) be given. Find the measure of the angle between them.   SOLUTION

 

9. Find the scalar projection, and vector projection of \({\bf b} = \langle 1, 3, -5 \rangle \) onto \({\bf a} = \langle 2, -2, 3 \rangle \).    SOLUTION