The Cross Product
1. Let \({\bf u} = \langle 2, 7, -5 \rangle \) and \({\bf v } = \langle 1, 3, 2 \rangle \)
be given. Find (i) \(
{\bf u} \times {\bf v}\), and (ii) \({\bf v} \times {\bf u} \).
solution
2.
Use properties of cross product to find the following product
s.
solution
(i) \( {\bf i} \times ({\bf j} \times {\bf k})\) (ii)
\(({\bf i} \times {\bf j}) \times ({\bf k} \times {\bf i}) \)
(iii) \((3{\bf k} \times 4{\bf j}) \times {\bf j}\)
(iv) \( ({\bf j} + {\bf
k}) \times ({\bf j} - {\bf k})
3.
Let \({\bf a} = \langle 1, 3, -2 \rangle \) and
\({\bf b } = \langle 0, -4, 3 \rangle \) be given. Find two unit
vectors orthogonal to both \( {\bf a }\) and \( {\bf b} \).
solution
4. Consider points A(3, −1, 2), B(2, 1, 5), and C(1, −2, −2). (a) Find
the area of parallelogram ABCD with adjacent sides
\(\overrightarrow{AB}\) and \(\overrightarrow{AC}\). (b) Find the
distance from point A to line BC.
solution
5.Let \({\bf u} = \langle -3, 4, -1 \rangle \),
\({\bf v } = \langle 0, -2, 3 \rangle \), and \({\bf w} = \langle
3,1,1\rangle \) be given. Find the volume of the parallelepiped with the
adjacent edges \({\bf u }, {\bf v }\) and \({\bf w
}\). solution