Conservative Vector Fields:

 

1. Determine whether or not \({\bf F} \) is a conservative vector field.   (a)  \( {\bf F}(x, y)  = (\sin y +e^x y){\bf i}+ (x \cos y + e^x ) {\bf j} \qquad \)   (b) \( {\bf F}(x, y)  = \langle xy+y^2, x^2+2xy \rangle\)   solution

 

2. Show that the vector field \( {\bf F} = \langle \sin y + y e^x,   e^x+ x \cos y \rangle \) is conservative. Then find a potential function \( f \), that is, find \( f(x,y) \) such that \(\nabla f = {\bf F} \).   solution

 

3. Show that the vector field \( {\bf F} = \langle \sin y - y \sin x,   \cos x+ x \cos y - y \rangle \) is conservative. Then find a potential function \( f \), that is, find \( f(x,y) \) such that \(\nabla f = {\bf F} \).   solution

 

4. Show that the vector field \( {\bf F}(x, y)  = \langle 2xy^3, 3x^2y^2 \rangle\) is conservative. Then evaluate the line integral  \(\displaystyle{ \int_C {\bf F} \cdot d{\bf r}} \) where \(C\) is any smooth path joining  the points \( (0, 0)\) and \((1, 1)\).   solution

 

5. Evaluate \(\displaystyle{ \int_C {\bf F} \cdot d{\bf r}} \) where \( {\bf F} = \langle 1+2xy^2,  2x^2y \rangle \), and \(C\) is the arc of the hyperbola \( y=1/x\) from  \( (1, 1)\) to  \((5, 1/5)\).   solution

 

6. Compute \( \displaystyle{\int_C \vec{F}\cdot \vec{dr} }\) where  \(\vec{F}(x,y)=\langle x^3-xy,-\frac{1}{2}x^2+2y\rangle\) and \(C\) is any path from (1, 2) to (3, 5).  solution

 

7. Find the work done by the force field \({\bf F}(x,y) = \langle3\sqrt{x}y, 2x^{3/2} \rangle\) in moving an object on a plane from (1, 2) to (4, 4).   solution

 

8. Find the work done  \(\displaystyle{ \int_C {\bf F} \cdot d{\bf r}} \) by \( {\bf F} = \langle y^2+2xe^y+1,  2xy+x^2e^y+2y \rangle \),  in moving an object along the path \( {\bf r}(t)=\sin t \, {\bf i} + \cos t \, {\bf j} , \: 0 \leq t \leq \pi/2.\)   solution