The Chain Rule:
1. If \( z=x^2y+3xy^3\), where \(x = \sin (t)\) and \(y=\cos
(2t)\), find \(\displaystyle{\frac{dz}{dt}}\) when \(t=0\).
solution
2. The pressure \( P \) of a gas is related to the
volume \(V\) and temperature \(T\) by the formula \( PV =
kT\), where temperature is expressed in kelvins \(K\). Find
\(\displaystyle{\frac{dP}{dt}}\) when \(k = 1, \frac{dV}{dt} = 3\, cm^3 / min,
\, \frac{dT}{dt} =0.8 K/min, V = 20 cm^3 \, \) and \( \: T =
300^\circ K\).
solution
3. If \( z=2\sin(xy)+xy^3\), where \(x = 2u-3v\) and \(y=1+e^{uv}\),
find \(\displaystyle{\frac{\partial z}{\partial u}}\) and
\(\displaystyle{\frac{\partial z}{\partial v}}\).
solution
4. Let \(\displaystyle{z=e^{x^3y^2}} \), where \(x = u+v\) and \(y=\sqrt{uv}\), find
\(\displaystyle{\frac{\partial z}{\partial u}}\) and
\(\displaystyle{\frac{\partial z}{\partial v}}\).
solution
5. Find \(\displaystyle{\frac{dy}{dx}}\) using partial derivatives
for the following. \( \quad \displaystyle{ \sin(xy^2)+1=2y^3-3x^2}\)
solution
6. Calculate \(\displaystyle{\frac{\partial z}{\partial x}}\) and
\(\displaystyle{\frac{\partial z}{\partial y}}\) for the surface \( z =
\dfrac{x^2e^y}{ye^x}\).
solution