Derivatives and Integrals of Vector Functions
1.
Consider the function \(\displaystyle{{\bf r}(t) = (1+t^2)
\, {\bf i} + t e^{-t} \, {\bf j} + \sin (2t) \, {\bf k}} \). solution
(a) Find the derivative. (b) Find the unit
tangent vector at the point where \(t=0 \).
2.
Find parametric equations for the line tangent to the graph of the given
function at the point where \(t=2\).
solution \[ {\bf r}(t)=\left\langle
2\sin \left(\frac{\pi}{2}t\right),-3e^{-t},3t^2 \right\rangle\]
3.
Find parametric equations for the tangent line to the helix with
parametric equations \[ x = 2 \cos t, \: y = \sin t,
\: z =t \] at the point \((0, 1, \pi/2)\). solution
4.
Evaluate the integral: \( \displaystyle{\int_0^1 \left( {\bf i} +
\frac{1}{1+t^2} {\bf j} + \frac{2t}{1+t^2}{\bf k} \right) \, dt}
\)
solution