Trigonometric Integrals: Evaluate the following integrals
- \( \displaystyle \int \tan(x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \sec(x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \sin^m (x) \cos^n(x)\ \mathrm{d}x\) (general form) Click Me
- \( \displaystyle \int \cos^2 (x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \cos^3 (x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \sin^4(x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \sin^3(x) \cos^3(x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \sin^{13}(2x) \cos^3(2x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \sin^3(x) \cos^4(x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \sin^{30}(x) \cos^5(x) \ \mathrm{d}x \) solution
- \( \displaystyle{\int_0^{\pi/2} \sin^2(x) \cos^2(x) \ \mathrm{d}x }\) solution
- \( \displaystyle\int \tan^m(x) \sec^n(x)\ \mathrm{d}x\) (general form) Click me
- \( \displaystyle \int \tan^2(x) \sec^2(x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \tan^3(x) \sec^3(x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \tan^{36}(x) \sec^4(x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \tan^3(x) \sec^{11}(x) \ \mathrm{d}x \) solution
- \( \displaystyle \int 4 \tan^{3}(2x) \sec^{17}(2x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \tan^4(x) \sec^4(x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \tan^3(x) \ \mathrm{d}x \) solution
- \( \displaystyle \int 5(\tan^2(x)+ \tan^4(x)) \ \mathrm{d}x \) solution
- \( \displaystyle \int \sec^3 (x) \ \mathrm{d}x \) solution
- \( \displaystyle \int \tan^2(x)\sec(x) \ \mathrm{d}x \) solution
- \(\displaystyle \int 15 \sin^4 (2x)\ \mathrm{d}x \) solution