I. The following three problems are related. solution
(a) Determine if the series \( \displaystyle{\sum_{n=1}^{\infty} (-1)^{n} \: \frac{1}{\sqrt[3]n}}\) is convergent or divergent.
(b) Determine if the series \( \displaystyle{\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]n}}\) is convergent or divergent.
(c) From parts (a) and (b) conclude if the series \( \displaystyle{\sum_{n=1}^{\infty} (-1)^{n} \: \frac{1}{\sqrt[3]n}}\) is absolutely convergent, conditionally convergent or divergent.
II. Determine whether each of the following series is
absolutely convergent, conditionally convergent or divergent.
- \(\displaystyle{\sum_{n=1}^{\infty} \frac{\sin n}{n^2}}\) solution
- \(\displaystyle{\sum_{n=1}^{\infty} (-1)^{n-1} \: \frac{1}{2n+3}}\) solution
- \(\displaystyle{\sum_{n=1}^{\infty} (-1)^{n-1} \: \frac{1}{n}}\) solution
- \(\displaystyle{\sum_{n=1}^{\infty} (-1)^{n+1} \: \frac{2^n-1}{3^n-1}}\) solution
- \( \displaystyle{\sum_{n=1}^{\infty} (-1)^n\frac{1}{\sqrt[3]{n}}}\) solution
III. Determine whether each of the following series is convergent or divergent.
- \(\displaystyle{\sum_{n=1}^{\infty} \frac{(-2)^n}{n}}\)
solution I
solution II
- \(\displaystyle{\sum_{n=1}^{\infty} \frac{(n+1)\,3^n}{2^n\,n^3}}\) solution
- \(\displaystyle{\sum_{k=1}^{\infty} \frac{3}{k!}}\) solution
- \(\displaystyle{\sum_{n=1}^{\infty} \left( \frac{n^2+1}{3n^2+2}\right)^n}\) solution
- \(\displaystyle{\sum_{m=1}^{\infty} \frac{m}{e^m}}\) solution
- \(\displaystyle{\sum_{n=1}^{\infty} \left( \frac{5n^2-2}{4n^2+3}\right)^n}\) solution
- \(\displaystyle{\sum_{n=1}^{\infty} \frac{n!}{n^n}}\) solution
- \(\displaystyle{\sum_{n=1}^{\infty}(-1)^{n-1} \: \frac{7^{n}}{5^n\, n^3}}\) solution
- \(\displaystyle{\sum_{n=3}^{\infty} 4 \left(1+ \frac{1}{n}\right)^{n^2}}\) solution