Section 7.4: Integraion by Partial Fractions. (Partial Fraction Decomposition, PFD)


Write out the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients.

I. (a) \( \displaystyle{ \frac{x^2}{x^2+x+12}} \)   (b) \( \displaystyle{ \frac{x-2}{x^2-x-12}} \)   solution

II. (a) \(\displaystyle{ \frac{x^4+2}{x^5+3x^2}} \)   (b) \( \displaystyle{\frac{2}{(x^2-4)^2}} \)   solution

Evaluate the integrals:

  1. \( \displaystyle{ \int \frac{x^2-2x}{x-1} \ \mathrm{d}x}\) solution
  2. \( \displaystyle{ \int \frac{1}{x^2-4} \ \mathrm{d}x }\) solution
  3. \( \displaystyle{ \int \frac{x}{x^2-x-2} \ \mathrm{d}x }\) solution
  4. \( \displaystyle{ \int \frac{2x+5}{x^2+3x+2} \ \mathrm{d}x} \) solution
  5. \( \displaystyle{\int \frac{x+2}{x^3-2x^2} \ \mathrm{d}x }\) solution
  6. \( \displaystyle{\int \frac{x^2+1}{(x-2)(x-5)^2} \ \mathrm{d}x }\) solution
  7. \( \displaystyle{\int \frac{2x}{(x+1)(x^2+1)} \ \mathrm{d}x} \) solution
  8. \( \displaystyle{\int_1^2 \frac{4y^2-7y-12}{y(y+2)(y-3)} \ \mathrm{d}y }\) solution
  9. \(\displaystyle{ \int_3^4 \frac{2x^2-4}{x^3-2x^2} \ \mathrm{d}x}\) solution
  10. \(\displaystyle{ \int \frac{x^2-x+6}{x^3+3x} \ \mathrm{d}x}\) solution
  11. \( \displaystyle{\int \frac{6x^3-3x^2-4x+7}{2x^2-x-1} \ \mathrm{d}x }\) solution
  12. \( \displaystyle{\int \frac{65x+7}{(8x+1)(x-1)} \ \mathrm{d}x }\) hints
  13. \( \displaystyle{\int_0^1 \frac{2}{2x^2+3x+1} \ \mathrm{d}x }\) hints
  14. \( \displaystyle{\int \frac{3x^2-10x+15}{(x-1)(x^2+2x+5)} \ \mathrm{d}x }\) solution
  15. \( \displaystyle{\int \frac{x^2-3x-3}{(x-1)^2(x^2+2x+2)} \ \mathrm{d}x }\) solution