Determine if the series converges or diverges. If it
converges, determine its sum.
- (a) \(\displaystyle{\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^n}\) (b) \(\displaystyle{\sum_{n=2}^{\infty}\left(\frac{1}{2}\right)^n}\)
(c) \(\displaystyle{\sum_{n=0}^{\infty}5\left(-\frac{3}{4}\right)^n}\) solution
- (a) \(\displaystyle{\sum_{n=1}^{\infty}8\left(-\frac{3}{4}\right)^n}\) \(\displaystyle{\sum_{n=2}^{\infty}8\left(-\frac{3}{4}\right)^n}\)
- (a) \(\displaystyle{\sum_{n=0}^{\infty}\left(\frac{5}{4}\right)^n}\) (b) \(\displaystyle{\sum_{n=1}^{\infty}\frac{n}{n+1} }\) (c) \(\displaystyle \sum_{n=1}^{\infty} 2^{2 n} 3^{1-n}\) solution
- \( \displaystyle{2-\frac{1}{2}+\frac{1}{8}-\frac{1}{32}+\frac{1}{128}-\cdots}\) solution
- (a) \( \displaystyle{\sum_{n=1}^{\infty} \ln \left( \frac{n^2+5}{3n^2+1}\right)}\) (b) \( \displaystyle{\sum_{n=1}^{\infty} \left(\frac{1}{5^n} + \frac{5}{n}\right)}\) solution
- (a) \( \displaystyle \sum_{n=1}^{\infty} \frac{7}{\pi^{n}} \) (b) \( \displaystyle \sum_{n=1}^{\infty} 8^{n+1} 9^{-n}\) (c) \( \displaystyle \sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{5^{n}}\) solution
- (a) \(\displaystyle{\frac{3}{2}+\frac{3}{4}+\frac{3}{6}+\frac{3}{8}+\cdots}\) (b) \(\displaystyle{\frac{1}{32}-\frac{1}{16}+\frac{1}{8}-\frac{1}{4}+\cdots}\) solution
- \(\displaystyle{ 2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots}\) solution
- \(\displaystyle{\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)}\) solution
- \(\displaystyle{\sum_{n=3}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right)}\) solution I solution II
- \(\displaystyle{\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right)}\) solution
- \(\displaystyle{\sum_{n=1}^{\infty}\left(e^{\frac{1}{n}}-e^{\frac{1}{n+1}}\right)}\) solution I solution II
- \(\displaystyle{\sum_{n=1}^{\infty}\left(2^{\frac{1}{n}}-2^{\frac{1}{n+1}}\right)}\) solution
- \(\displaystyle{\sum_{n=1}^{\infty} \left(3^{n}-3^{n+1}\right)}\) solution
- \(\displaystyle{\sum_{n=1}^{\infty} \frac{1}{n^2+n}}\) solution
- \(\displaystyle{\sum_{n=2}^{\infty} \frac{n^2+6n+3}{2n^2+n-1}}\) solution
- Write the series as a telescoping sum, find a formula for \(S_N\), and find the sum of the series (if it converges).
\(\displaystyle {\sum _{n=2}^\infty \ln \left (1 + \frac {1}{n}\right ) }\) solution
- Find the sum of the geometric series. (a) \(\displaystyle{\sum_{n=2}^{\infty} \frac{5}{2^n}} \)
(b) \(\displaystyle{\sum_{n=1}^{\infty} \frac{6}{(-3)^n}} \) (c) \(\displaystyle{\sum_{n=1}^{\infty} \frac{4}{2^{-n}}} \) solution