Use an appropriate test to show whether each of the following series converges or diverges.

(a) \(\displaystyle{\sum_{n=1}^{\infty} \frac{n-2}{3n+5}}\)   solution

(f) \( \displaystyle{\sum_{n=2}^{\infty} \frac{1}{n\, \sqrt{\ln (n)}}}\)   solution

(b) \(\displaystyle{\sum_{n=1}^{\infty} \frac{n^2+1}{n2^n}}\)   solution

(g) \(\displaystyle{ \sum_{n=1}^{\infty} \frac{(n+1)3^n}{n^32^n}}\)   solution

 (c) \(\displaystyle{\sum_{n=1}^{\infty} \frac{\sqrt{n^3+1}}{2n^3+3n^2+2}}\)   solution

 (h) \(\displaystyle{\sum_{n=0}^{\infty}\left(\frac{2n^2}{3n^2+n+10}\right)^n}\)   solution

 (d) \( \displaystyle{\sum_{n=0}^{\infty} \frac{(-3)^{n+1}}{2^{3n}}}\)   solution

 (h) \(\displaystyle{\sum_{n=0}^{\infty}\frac{3^n\,n^2}{n!}}\)   solution

(e) \( \displaystyle{\sum_{n=0}^{\infty} \frac{n!}{2\cdot 5\cdot8\cdots(3n+2)}}\)   solution

 (i) \(\displaystyle{\sum_{n=0}^{\infty}\left(\frac{n}{n+1}\right)^{n^2}}\)   solution

(j) \(\displaystyle{\sum_{n=2}^{\infty} \frac{\ln n}{n^2}}\)   solution