Sec 3.2: Product and Quotient Rules
  
  
    
-  Find the derivatives of the following functions. You don't have 
      to simplify your answer.  solution
 
  
  (a) \(f(x)= (x^2+2x)(3x-5)\)   (b) 
    \(f(x)= (5x-3x^5-x^7)(3x^2-5x)\)  
  
    
-  Find the derivatives of the following functions. You don't have   to simplify your answer.    solution
 
  
  (a) \(f(t)=e^t(t^3+2t)\)    (b) \( g(t)=\dfrac{e^t-1}{5t^3+7t}\)
  
    
-  Find the derivatives of the following functions. You don't have to 
      simplify your answer.  solution
 
  
  (a) \(f(x)= \dfrac{x^2+2x}{5x-1}\)   (b)  \(f(x)= \dfrac{7+3x^5-x^7}{3x^2-5x}\)  
  
    
-  Differentiate.   \( \displaystyle{f(x)=\frac{2-x e^{x}}{x+e^{x}}}\)    solution
 
  
  
    
-  If \( \displaystyle{f(x) = \frac{x^2+3x+1}{2x-5}} \),   find the   value of   \( f'(0)\).     solution
 
  
  
    
-  If \(F(x)=  (x^2+1)\, e^x \),   find  \( F'(0) \),   and if \(\displaystyle{G(x)=  \frac{x}{x-3}}\),   find  \( G'(-1) \).   solution
 
  
  
    
-  If  \( g(x)= \sqrt{\frac{1}{x}} \),    find the value of  \( g'(4)\).  solution
 
  
  -  Find the first and second derivative of \(f(x)=e^x\sqrt{x}\).  solution 
 
 
  
    
-  Find an equation of the tangent line to the curve 
      \(\displaystyle{ y=\frac{e^x}{1+x^2}}\) at the point \( (1, \frac{1}{2}e )\).   solution
 
  
   Refer the table for the questions (10)-(12) given below.   solution
  
    
      
        \(x\) | 
        \( f(x) \) | 
        \( f'(x) \) | 
        \( g(x) \) | 
        \( g'(x) \) | 
      
      
        0 | 
          2 | 
        -2 | 
        4 | 
        1 | 
      
      
        1 | 
        2 | 
        3 | 
        1 | 
        2 | 
      
    
  
  
    
- If  \( H(x)=2 f(x)-g(x)\), find  \( H'(0).\)
 
     
    -   If  \( J(x)= f(x)\,g(x)\), find \( J'(1).\)
 
     
    -   If  \( K(x)= e^x \,f(x) \),  find \( K'(0).\)
 
  
  
  
    
-  Suppose that  \(f(5)= 3,  \, f^{\prime}(5)=2, \, g(5)=-6, \)   and  \(g^{\prime}(5)=7 \). Find the following values.        (a) \( (fg)'(5) \)    (b) \( (f/g)'(5) \)   (c) \( (g/f)'(5) \)    solution
 
  
  
    
-  If \(F(x)= x \,e^x \), find (i) \( F'(\ln 2) \) and (ii) \(F''(0)\).   solution