Sec 3.2: Product and Quotient Rules
- Find the derivatives of the following functions. You don't have
to simplify your answer. solution
(a) \(f(x)= (x^2+2x)(3x-5)\) (b)
\(f(x)= (5x-3x^5-x^7)(3x^2-5x)\)
- Find the derivatives of the following functions. You don't have to simplify your answer. solution
(a) \(f(t)=e^t(t^3+2t)\) (b) \( g(t)=\dfrac{e^t-1}{5t^3+7t}\)
- Find the derivatives of the following functions. You don't have to
simplify your answer. solution
(a) \(f(x)= \dfrac{x^2+2x}{5x-1}\) (b) \(f(x)= \dfrac{7+3x^5-x^7}{3x^2-5x}\)
- Differentiate. \( \displaystyle{f(x)=\frac{2-x e^{x}}{x+e^{x}}}\) solution
- If \( \displaystyle{f(x) = \frac{x^2+3x+1}{2x-5}} \), find the value of \( f'(0)\). solution
- If \(F(x)= (x^2+1)\, e^x \), find \( F'(0) \), and if \(\displaystyle{G(x)= \frac{x}{x-3}}\), find \( G'(-1) \). solution
- If \( g(x)= \sqrt{\frac{1}{x}} \), find the value of \( g'(4)\). solution
- Find the first and second derivative of \(f(x)=e^x\sqrt{x}\). solution
- Find an equation of the tangent line to the curve
\(\displaystyle{ y=\frac{e^x}{1+x^2}}\) at the point \( (1, \frac{1}{2}e )\). solution
Refer the table for the questions (10)-(12) given below. solution
\(x\) |
\( f(x) \) |
\( f'(x) \) |
\( g(x) \) |
\( g'(x) \) |
0 |
2 |
-2 |
4 |
1 |
1 |
2 |
3 |
1 |
2 |
- If \( H(x)=2 f(x)-g(x)\), find \( H'(0).\)
- If \( J(x)= f(x)\,g(x)\), find \( J'(1).\)
- If \( K(x)= e^x \,f(x) \), find \( K'(0).\)
- Suppose that \(f(5)= 3, \, f^{\prime}(5)=2, \, g(5)=-6, \) and \(g^{\prime}(5)=7 \). Find the following values. (a) \( (fg)'(5) \) (b) \( (f/g)'(5) \) (c) \( (g/f)'(5) \) solution
- Find \( F'(\ln 2) \) if \(F(x)= x \,e^x \). solution
- If \( f(x)=x\, e^x \),
find the value of \( f''(0).\) solution