Sec 3.2: Product and Quotient Rules

    Product Rule (formula derivation)

  1. Find the derivatives of the following functions. You don't have to simplify your answer.  solution
  2. (a) \(f(x)= (x^2+2x)(3x-5)\)   (b) \(f(x)= (5x-3x^5-x^7)(3x^2-5x)\) 

  3. Find the derivatives of the following functions. You don't have to simplify your answer.    solution
  4. (a) \(f(t)=e^t(t^3+2t)\)    (b) \( g(t)=\dfrac{e^t-1}{5t^3+7t}\)

  5. Find the derivatives of the following functions. You don't have to simplify your answer.  solution
  6. (a) \(f(x)= \dfrac{x^2+2x}{5x-1}\)   (b) \(f(x)= \dfrac{7+3x^5-x^7}{3x^2-5x}\) 

  7. Differentiate.   \( \displaystyle{f(x)=\frac{2-x e^{x}}{x+e^{x}}}\)    solution
  8. If \( \displaystyle{f(x) = \frac{x^2+3x+1}{2x-5}} \),   find the value of   \( f'(0)\).     solution
  9. If \(F(x)= (x^2+1)\, e^x \),   find \( F'(0) \),   and if \(\displaystyle{G(x)= \frac{x}{x-3}}\),   find \( G'(-1) \).   solution
  10. If  \( g(x)= \sqrt{\frac{1}{x}} \),   find the value of  \( g'(4)\).  solution
  11. Find the first and second derivative of \(f(x)=e^x\sqrt{x}\).  solution
  12. Find an equation of the tangent line to the curve \(\displaystyle{ y=\frac{e^x}{1+x^2}}\) at the point \( (1, \frac{1}{2}e )\).   solution
  13. Refer the table for the questions (10)-(12) given below.   solution

    \(x\)

    \( f(x) \)

    \( f'(x) \)

    \( g(x) \)

    \( g'(x) \)

    0

      2

    -2

    4

    1

    1

    2

    3

    1

    2

  14. If  \( H(x)=2 f(x)-g(x)\), find  \( H'(0).\)
  15.   If  \( J(x)= f(x)\,g(x)\), find \( J'(1).\)
  16.  If  \( K(x)= e^x \,f(x) \), find \( K'(0).\)

  17. Suppose that \(f(5)= 3, \, f^{\prime}(5)=2, \, g(5)=-6, \)   and  \(g^{\prime}(5)=7 \). Find the following values.    (a) \( (fg)'(5) \)   (b) \( (f/g)'(5) \)   (c) \( (g/f)'(5) \)    solution
  18. Find \( F'(\ln 2) \)  if  \(F(x)=  x \,e^x \).    solution
  19. If  \( f(x)=x\, e^x \),   find the value of \( f''(0).\)   solution

 

 

Back to homepage