Section 2.6: Limits at Infinity; Horizontal Asymptotes
- Evaluate \( \displaystyle{\lim_{x \to \infty} \frac{\sin x}{x}} \) solution
- Find the limit \(\displaystyle{\lim_{x \to -\infty} \left( 3 + \frac{200}{x}+
\frac{\sin x }{x^2}\right)}\) solution
- Find the limit \( \displaystyle{\lim_{x \to \infty} \frac{x^2-5x+7}{4x^2+3x+1}} \) solution
- Find the limit \( \displaystyle{\lim_{x \to \infty} \frac{3x^4-2x+5}{4x^3-5x+1}}\) solution
- Find the limit \( \displaystyle{\lim_{x \to -\infty}
\frac{1-2x+4x^3}{2+x^2-3x^3}}\) solution
- Find the limit \(\displaystyle{\lim_{x \to \infty} \frac{3x^2-2x+5}{4x^2 + 2x+1}}\) solution
- Find the limit \(\displaystyle{\lim_{x \to \infty} \frac{\sqrt{9x^4+5}}{5x^2 -3x+1}}\) solution
- Evaluate \( \displaystyle{\lim_{x \to \infty} \frac{1+e^x}{1-3e^x}} \) solution
- Find the limit \( \displaystyle{\lim_{x \to -\infty}
\frac{2x}{\sqrt{x^2-1}}}\) solution
- Find the horizontal and vertical asymptotes of the curve. \(\displaystyle{y=\frac{5+x^{3}}{x-x^{3}}}\) solution
- Find the horizontal and vertical asymptotes of the curve. \(\displaystyle{f(x)=\frac{\sqrt{2 x^{2}+1}}{5x-3}}\) solution
- Sketch the graph of an example of a function \(f\) that satisfies all of the given conditions. solution
\( \quad \displaystyle{\lim _{x \rightarrow 3} f(x)=-\infty, \: \lim _{x \rightarrow \infty} f(x)=2, \: \lim _{x \rightarrow-\infty} f(x)=0, \: \lim _{x \rightarrow 0^{+}} f(x)= \infty, \:\lim _{x \rightarrow 0^{-}} f(x)=-\infty}
\)
- Sketch the graph of an example of a function \(f\) that satisfies all of the given conditions. solution
\( \quad \displaystyle{ f(0)=3, \lim_{x \to 0^-} f(x)=4, \lim_{x \to 0^+} f(x)= 2,}\) \(\displaystyle{ \lim_{x \to -\infty} f(x)= -\infty, \lim_{x \to 4^-} f(x)=-\infty,}\) \(\displaystyle{ \lim_{x \to 4^+} f(x)= \infty, \lim_{x \to \infty} f(x)=3 } \)
- Sketch the graph of an example of a function \(f\) that satisfies all of
the given conditions. solution
\(\quad \displaystyle{ f(2)=0, \, \lim_{x \to 2^-} f(x)=\infty, \, \lim_{x
\to 2^+} f(x)=-\infty, \, \lim_{x \to \infty} f(x)= -1, \, \lim_{x \to -\infty}
f(x)= 0} \)
- Sketch the graph of an example of a function \(f\) that satisfies all of
the given conditions. solution
\( \quad \displaystyle{f(0) =0, \, \lim_{x \to -1 ^-} f(x)=\infty, \,
\lim_{x \to -1 ^+} f(x)=-\infty, \, \lim_{x \to 1 ^-} f(x)=-\infty, \, \lim_{x
\to 1 ^+} f(x)=\infty, \, \lim_{x \to \infty} f(x)= 1, \, \lim_{x \to -\infty}
f(x)= -2} \)
- Evaluate the following limits. solution
\( \qquad \displaystyle{ \lim_{x\to \infty} \arctan(x^2) \qquad \qquad \qquad \lim_{x\to -\infty} \arctan(e^x) }\)