Section 4.9: Antiderivatives
	
	 1. Evaluate each integral. (This is same as finding the most general antiderivative of the function inside the integral sign)    	solution
	 (a) \( \int x^3 \, dx\)   	(b) \( \int e^x \, dx\)    (c) \( \int \frac{1}{x}\,
	dx\)     (d) \( \int \sqrt x \, dx\)    (e) \( \int \sqrt[3] {x^2} \, dx\)    (f) \( \int \, dx\)     (g) \( \int  0 \, dx\)    (h) \( \int 2 \, dx\)     (i) \( \int \pi^2 \, 	dx\)    (j) \( \int e^3 \, dx\)   (k) \(\int x^{99} \, dx\)    (l) \( \int \frac{1}{x^4} \,	dx\)
	    (m) \( \int 3^x  dx\)    (n)	\(\int 5 \cdot 2^x \, dx\) 
	
 2. Find the most general antiderivative of the function.      solution
 (a) \(f(x)= 1-3x^2+e^x \)    (b) \(\displaystyle f(x)=\sqrt[4]{x} - \frac{1}{x^2}\)    (c) \( f(x)= \dfrac{1+x-x^2}{x}\) 
	
  
	 3. Find the most general antiderivative of the function.    solution
 (a) \(f(t)= 2t(2-t)^2 \)    (b) \(f(x)=\dfrac{x^2+2x-4}{\sqrt x}\)    (c) \( f(x)= (2x-1)(x+3)\) 
	
	
4.  Find the most general antiderivative of the function.   solution 
         (a) \( f(\theta)=\pi -\sec \theta \tan \theta \)     (b) \( f(x) = e^x+\cos x + \dfrac{1}{\cos^2 x} \)     (c) \( f(x)= 14\,\sqrt[4]{x^3} + \dfrac{2}{1+x^2} \) 
  
   
           5. Find \(f(2)\) given that the graph of \(f\) passes through the point \( (1, 6)\) and that the slope of its tangent line at \((x, f(x))\) is
        \(2x + 1\).    	  solution
  
   
   6. Find the function \( f \) in each case.
     (a)  If   \( f'(x)=1-6x \), and \(f(1)=8\), 
	find  \(f\).   
	  solution
       (b)  If   \( f''(x)=\sin x + \cos x\), and \(f(0)=3,
        f'(0)=4 \), find  \(f\).   
	  solution
           (c)  If   \( f''(t)= 2 e^t + 3 \sin t\), and \(f(0)=0, f(\pi)=0 \),
        find  \(f\).   
	  solution
	
	
 
	7. A particle is moving with the following data. Find the position \(s(t)\) of the particle.   solution
 \[ v(t)= 3 \sqrt{t}+1, \quad s(4)=10 \]
	
		
	8. Solve the initial value problem.
 (a) \( f'(x) = 1+3x^2, \quad f(-1) = 2  \) 
solution
 (b) \( f'(x) = 2 x - \dfrac{1}{x}, \quad f(1) = 5 \) 
solution
	    (c) \( f'(x) = \dfrac{1}{\sqrt x}, \quad f(4) = 2 \) 
	  solution
   
	   Evaluate \( \displaystyle{\int \left(\sin(3x) - e^{5x} \right) \, dx}\)    
	  solution