Implicit Differentiation:
1.  Find \( \frac{dy}{dx} \) by implicit differentiation.
	(a)   \(\displaystyle{\sqrt{x}-3\sqrt{y}=5} \)    solution
	(b)  \(\displaystyle{ 2x^3-6y^3=8 } \) 
	solution
	(c)  \(\displaystyle{\frac{1}{x^3} + \frac{1}{y^2}=2 }\)  
	solution 
	(d) \(\displaystyle{x y - y^3 = 4x-1} \)  solution      
	(e) \(\displaystyle{ x^2-xy+y^2= 5} \)   
solution     
(f) \(\displaystyle{e^{x+y} = 1+ x^2 y^2 } \)   
  solution  
	(g) \(\displaystyle{xy = \sqrt{x^2+y^2} } \)   
  solution  
   (h) \(\displaystyle{ y \cos x=x^2+y^2}\)     solution
	 (i) \(\displaystyle{ y \cos(x^2)=x \cos(y^2)}\)    solution
   (j) \(\displaystyle{x^3y^2+ x \tan y = 2} \)    solution
   (k) \(\displaystyle{ 2-x=\sin(xy^2)}\)    solution
	
	 (l) \(\displaystyle{\tan(x-y)=\frac{y}{1+x^2}}\)   solution
	
 2. Find the slope of the tangent line to the curve   \( \tan(xy) 
= y \)   at the point \(\left(\frac{\pi}{4}, 1 \right)\).  solution
 
   3. Use implicit differentiation to find an equation of the tangent line to the curve   
    \(x^2 + xy + y^2=3 \)   at the point \( (1,1) \).   solution
	
	
	
	Inverse Trigonometric Functions: Find the derivative of 
	
	 1. (a) \( y=\sin^{-1}(e^x) \)    (b) \( y=\tan^{-1}(x^2+5x) \)      solution
   2. \( f(x) =\sin^{-1}(x \tan x) \)      solution  
	 3. (a) \(\displaystyle{y=\sin^{-1}(5x^2+3) }\)           (b)   \(\displaystyle{y=5\tan^{-1} \sqrt{3x-1} }\)           (c)   \(\displaystyle{y=\tan^{-1} (e^x\sin x) }\)   solution