Section 3.6: Derivative of Logarithmic functions
Differentiate the following functions: 1--9.
- (a) \(\displaystyle{f(x) = e^{-5x} }\) (b) \(\displaystyle{f(x) = (2+\ln x)^5 }\)
(c)\(\displaystyle{f(x) = \ln (5x^2 -x+3) }\) solution
- (a) \(\displaystyle{f(x) = \sqrt[4]{\ln x} }\) (b) \(\displaystyle{f(x) = \ln(x^3+7)}\) (c) \(\displaystyle{g(x)=2x\ln(3x)-5x }\) solution
- (a) \(\displaystyle{f(x)=\ln(\ln x) }\) (b) \(\displaystyle{f(t)=\ln(\ln(5t)) }\) (c) \(\displaystyle{g(t)=\ln(t\,e^{-2t}) }\) solution
- (a) \(\displaystyle{f(x)=\ln(\sin^2 x) }\) (b) \(\displaystyle{f(t)=\ln(\sqrt{\ln(2t+3)}) }\) solution
- (a) \(\displaystyle{f(x) = \frac{\ln x}{e^x - x}}\) solution (b) \(\displaystyle{f(x)=\ln(x+\sqrt{x^2-2}) }\) solution
- (a) \(\displaystyle{f(x) = \tan(\ln(2x))}\) (b) \(\displaystyle{f(x) = \cos\left(\frac{x}{\ln x}\right) }\) solution
- (a) \(\displaystyle{f(x) = \ln \frac{2x}{x-1} }\) (b) \(\displaystyle{f(x) = \ln (x^2 e^x) }\)
solution
- (a) \(\displaystyle{f(x) = \log_{10} (\sqrt{x})}\) (b) \(\displaystyle{f(x) = \log_5(x^3-1)}\) solution
- (a) \(\displaystyle{f(x) = \log_3 (x^2+1)}\) (b) \(\displaystyle{f(x) = \log_5(x \tan x)}\) solution
- Differentiate two different ways: \(\displaystyle{f(x) = \ln(xe^{-9x})}\). solution
- If \(\displaystyle{f(x) = \frac{\ln x}{x^2}}\), find \(f'(1)\). solution
- If \( f(x) = \ln (x^2-3x +1) \), find \(f'(0)\). solution
- Find an equation of the tangent line to the curve
\( y=\ln(x^3-7) \) at the point \( (2, 0) \). solution
- Find an equation of the tangent line to the curve \( \displaystyle y=\frac{5\ln(x)}{x} \) at the point \( (e, 5/e) \). solution
- Use logarithmic differentiation to find the derivative of the function. \(y=(x^3+2)^2(x^5+3)^4.\) solution
Logarithmic Differentiation:
Use logarithmic differentiation to find the derivative of the function.
(a) \(y = x^{ x} \)
solution (b) \(y = (x^2+1)^x \)
solution (c) \(y = (5+2x)^x \)
solution
(d) \(y = x^{\sin x} \) solution (e) \(y = (\tan x)^x \) solution