Section 3.6: Derivative of Logarithmic functions
	 Differentiate the following functions: 1--9.
	
	
	-  (a) \(\displaystyle{f(x) = e^{-5x} }\)   (b) \(\displaystyle{f(x) = (2+\ln x)^5 }\)  
(c)\(\displaystyle{f(x) = \ln (5x^2 -x+3) }\)    solution
 
	
	
	
	-  (a) \(\displaystyle{f(x) = \sqrt[4]{\ln x} }\)    (b) \(\displaystyle{f(x) = \ln(x^3+7)}\)    (c) \(\displaystyle{g(x)=2x\ln(3x)-5x }\)      solution
 
	
	
	
	-  (a) \(\displaystyle{f(x)=\ln(\ln x) }\)    (b) \(\displaystyle{f(t)=\ln(\ln(5t)) }\)    (c) \(\displaystyle{g(t)=\ln(t\,e^{-2t}) }\)    solution
  
	
	
		
	-  (a) \(\displaystyle{f(x)=\ln(\sin^2 x) }\)      (b) \(\displaystyle{f(t)=\ln(\sqrt{\ln(2t+3)}) }\)     solution
  
	
	
	
	-  (a) \(\displaystyle{f(x) = \frac{\ln x}{e^x - x}}\)   solution        (b) \(\displaystyle{f(x)=\ln(x+\sqrt{x^2-2}) }\)    solution
 
	
	
	
	-  (a) \(\displaystyle{f(x) = \tan(\ln(2x))}\)     (b) \(\displaystyle{f(x) = \cos\left(\frac{x}{\ln x}\right)  }\)    solution
 
	
	
 
-  (a) \(\displaystyle{f(x) = \ln \frac{2x}{x-1} }\)     (b) \(\displaystyle{f(x) = \ln (x^2 e^x) }\)  
solution
 
	
	
		
		 
-  (a) \(\displaystyle{f(x) = \log_{10} (\sqrt{x})}\)     (b) \(\displaystyle{f(x) = \log_5(x^3-1)}\)    solution
  
	
	 
	
   
-  (a) \(\displaystyle{f(x) = \log_3 (x^2+1)}\)    (b) \(\displaystyle{f(x) = \log_5(x \tan x)}\)   solution 
  
	
	 
  
	-   Differentiate two different ways: \(\displaystyle{f(x) = \ln(xe^{-9x})}\).     solution
  
  
  
  
  -   If \(\displaystyle{f(x) = \frac{\ln x}{x^2}}\), find \(f'(1)\).    solution
  
  
	
  -  If \( f(x) = \ln (x^2-3x +1) \), find \(f'(0)\).    solution	
 
	
	 
	
	-  Find an equation of the tangent line to the curve  
    \( y=\ln(x^3-7) \)   at the point \( (2, 0) \).   solution
 
	
	
	
	-  Find an equation of the tangent line to the curve  \( \displaystyle y=\frac{5\ln(x)}{x} \)   at the point \( (e, 5/e) \).     solution
 
	
	
	
	-  Use logarithmic differentiation to find the derivative of the function.   \(y=(x^3+2)^2(x^5+3)^4.\)     solution
 
	
    
   
	 Logarithmic Differentiation:
	 Use logarithmic differentiation to find the derivative of the function.
  (a) \(y = x^{ x} \)   
  solution     (b) \(y = (x^2+1)^x \) 
solution     (c) \(y = (5+2x)^x \)  
solution
  (d) \(y = x^{\sin x} \)     solution     (e) \(y = (\tan x)^x \)     solution