Section 2.8: The Derivative as a Function 
	 
   1. Find the derivative of the function using the definition of derivative (do
    not use shortcuts).
	
	(a)  \( \displaystyle{f(x)= x^2+2x} \)     solution 
(b)  \( \displaystyle{f(x)= 1- x^2} \)     solution 
  (c)  \( \displaystyle{f(x)= x^2-5x+1}\)     solution 
  (d)  \( \displaystyle{f(x)= 3x^2-5x }\)     solution 
    (e)  \( \displaystyle{f(x)= \frac{1}{x}} \)   
	solution 
  
	(f)  \( \displaystyle{f(x)= \frac{1}{\sqrt{x}}} \)   
	solution 
 
	2. Use the definition of a derivative to find \(f'\) and \(f''.\) Given that   \(f(x)=3x^2-5x+7.\)    solution
	
  3. The graph of \( y=  f(x) \) is given below.  State, with reasons, the numbers at which  \( f \) is not differentiable.    
  
    
    
   
	4. Find an equation of the tangent line to the curve \( f(x) =\sqrt{x} 
	\) at \(x=4\). Given that   \( f'(x)=\dfrac{1}{2\sqrt{x}} \).  
	solution
	 
	5. Find an equation of the tangent line to the curve \( f(x) 
	=2x^2-5x \) at \( (1, -3)\). Given that   \( f'(x)= 4x-5 \).  
	solution
	 
   6. The displacement (in meters) of a particle moving in a straight line is given by \( s(t) =t^3-2t\), where \(t\) is measured in seconds. 
  Given that \(s'(t)=3t^2-2\), and \(s''(t)=6t\).  
  solution
  (a) Find the average velocity over the time interval \( [2, 5]\).
  (b) Find the instantaneous velocity at \(t=2\).
	(c) Find the acceleration when \( t = 3\).