The Definite Integral part One
- The graph of \(f\) is shown. Evaluate each integral by interpreting it in terms of areas. solution
(a) \( \displaystyle{\int_{0}^4 f(x) dx}\)
(b) \( \displaystyle{\int_{6}^{10} f(x) dx}\)
(c) \( \displaystyle{\int_{0}^{10} f(x) dx}\)
- The graph of \(g\) consists of two straight lines and a semicircle. Use it to evaluate each integral. solution
(a) \( \displaystyle{\int_{0}^4 g(x) \, dx}\) (b) \( \displaystyle{\int_{0}^{8} g(x) \, dx}\) (c) \( \displaystyle{\int_{8}^{16} g(x) \, dx}\) (d) \( \displaystyle{\int_{0}^{18} g(x) \, dx}\)
- Consider the following graph of a function \(y=f(x)\) which is a curve for \(x\le 0\) and a line for \(x\ge 0\). Given that the area of the left region is 6.5
as shown,
evaluate (a) \( \displaystyle{\int_{0}^{-3} f(x) \, dx}\) (b) \( \displaystyle{\int_{0}^{4} f(x) \, dx}\) (c) \( \displaystyle{\int_{0}^{8} f(x) \, dx}\)
- Evaluate each of the following integrals by interpreting it in terms
of areas. solution
(a) \( \displaystyle{\int_{-2}^3 |x| \, dx}\) (b) \( \displaystyle{\int_{-1}^4 (4-2x)\, dx}\)
- Evaluate each of the following integrals by interpreting it in terms of areas. solution
(a) \( \displaystyle{\int_{0}^6 |x-4| \, dx}\) (b) \(
\displaystyle{\int_{-2}^2 \sqrt{4-x^2} \, dx}\)
- Evaluate each integral by interpreting it in terms of areas. solution
(a) \(\displaystyle \int_{-2}^1 |x|\, dx \) (b) \(\displaystyle \int_{1}^4 |x-2|\, dx \)
(c) \(\displaystyle \int_{-2}^2\sqrt{4-t^2} \, dt \)
- If \( \displaystyle \int_0^5 f(x)\, dx = 6\) and \(\displaystyle
\int_3^5 f(x)\, dx=2\), find \(\displaystyle \int_0^3 f(x)\, dx\). solution
- If \( \displaystyle \int_1^6 f(x)\, dx = 7, \int_1^6
g(x)\, dx= -2\) , find (a) \(\displaystyle \int_1^6 [3f(x)-2g(x)]\,
dx\), (b) \(\displaystyle \int_1^6 [3+f(x)]\, dx\). solution