Computing Limits using Laws
      Find the limit if it exists. 
      
     -  
  (a) \(\displaystyle{\lim_{x \to -1} \,
        \dfrac{x+1}{x-1}}\)          
        (b) \(\displaystyle{\lim_{x \to -1} \, \dfrac{2x+2}{x^2-1}}\)    solution
  
    -   
   (a) \(\displaystyle{\lim_{x \to 0} \,
        \dfrac{x^2-4x}{x^3+3x}}\)      
            (b) \(\displaystyle{\lim_{x \to 2}    \frac{x^2-2x}{x^2-x-2} }\)    solution 
  
	 -  
   (a) \(\displaystyle{\lim_{x \to -1} 5x^3-3x^2+7x-11}\)     
          (b) \(\displaystyle{\lim_{x \to 3} \frac{x^2-2x-3}{x-3} }\)    solution 
  
	  -  
   (a) \(\displaystyle{\lim_{h\to 0} \frac{\frac{1}{5+h}-\frac{1}{5}}{h}}\)     
            (b) \(\displaystyle{\lim_{h \to 0} \frac{\sqrt{9+h}-3}{h} }\)    solution 
	   
     -  
  \(\displaystyle{\lim_{h \rightarrow 0} \:
        \frac{\sqrt{25+h}-5}{h}} \)    solution 
  
      -  
  \(\displaystyle{ \lim_{x \rightarrow 4} \:
        \frac{\sqrt{x}-2}{x-4}} \)    solution  
  
      -  
  \(\displaystyle{\lim_{h \rightarrow 0}\:
        \frac{(2+h)^2-4}{h}} \)     solution  
  
      -  
  \(\displaystyle{\lim_{x \rightarrow 2}\:
        \frac{\frac{1}{2}-\frac{1}{x}}{2-x}} \)   solution1  
        solution2
  
        
      -  
   \(\displaystyle{\lim_{x \rightarrow 4}\:
        \frac{\frac{1}{3}-\frac{1}{\sqrt{x+5}}}{x-4}} \)   solution
  
      -  
   \(\displaystyle{ \lim_{x \rightarrow 16}\:
        \frac{16x-x^2}{4-\sqrt{x}}} \)     solution
  
	    \(\displaystyle{\lim_{h \rightarrow 0}\:
		  \frac{\frac{1}{(a+h)^2}-\frac{1}{a^2}}{h}} \)   solution 
  
    -  
 \(\displaystyle{\lim_{x \rightarrow -2}\:
        \frac{|x+2|}{3x+6}} \)     solution
  
      \(\displaystyle{\lim_{x \rightarrow 0}\: x^2\sin
        \left(\frac{1}{x}\right)} \)   solution
 
	 -  
\(\displaystyle{\lim_{x \rightarrow 0}\: x^3\cos \left(\frac{5}{x}\right)}\)  solution 
 
	 
     -  
   If  \( 2x\le f(x)\le x^4-x^2+2 \)   for all \(x\), find the
        value of   \(\displaystyle{\lim_{x \rightarrow 1}\:
        f(x)}. \)  solution
 
       
      Evaluate the limits or state that they do not exist.  solution
  
     (a)  \( \displaystyle{\lim_{x \to 3^-} \frac{2}{(x-3)^3}}\)  (b) \( \displaystyle{\lim_{x \to 3^+ } \frac{2}{(x-3)^3}} \)  (c) \( \displaystyle{\lim_{x \to 3} \frac{2}{(x-3)^3}} \)