Linear Approximation  
-  Find the linearization, \(L(x)\), of the function at given \(x=a\). 
(a) \( f(x)=\ln x, \quad  x=1\)   
solution
(b) \( f(x)=\sqrt{x+3}, \quad  x=1\)  
solution 
-  Use a linear approximation to estimate the given number. 
(a) \( (4.01)^{\frac{1}{2}}\)  
solution
(b) \( \sqrt[3] {27.1}\)  
solution 
-  Use a linear approximation to approximate the value of \( e^{0.2} \).    solution 
-  Use a linear approximation to estimate \( (1.01)^3 \).   solution 
-  Find a linearization, \(L(x)\), of the function \(f(x)=\sqrt{1+x} \) at \(x=0\). Use it to approximate the following numbers.   solution
   (a) \(\sqrt{1.03} \)     (b) \(\sqrt{0.98} \)