Additional Practice Questions:

Consider the following graph of \(y=f(x)\) for the questions 1, 2, and 3.

pic

 

  1. Find the following values, if they exist.
  2. (a) \(\displaystyle{\lim_{x \to 0^-}   f(x) } \)    (b) \(\displaystyle{\lim_{x \to 0^+}   f(x) } \)    (c) \(\displaystyle{\lim_{x \to 0}   f(x) } \)

    (d) \(\displaystyle{\lim_{x \to 2^-}   f(x) } \)    (e) \(\displaystyle{\lim_{x \to 2^+}   f(x) } \)   (f) \( f(-4)\)   (g) \(f'(-3)\)

    Solution

  3. Consider the above graph of \(f\). Is \( f \) continuous for the following values of \( x \)? If you say Yes, justify your answer using the definition of continuity. If you say No, state what type of discontinuity (removable, jump or infinite) occurs at that value of \(x\).
  4. \(x\) value

    Continuous?

    Reason/Type

    -4

    Yes    No

    -1

    Yes    No

    0

    Yes    No

    2

    Yes    No

    Solution

  5. Does \(f\) have a derivative at each of the following \(x\) values? In the table below, circle Yes or No. If you circle No, state the reason, and if you circle Yes, evaluate the derivate.
  6. \( x \) value

    Differentiable?

    Reason/Derivative

    -5

    Yes    No

    -1

    Yes    No

    0

    Yes    No

    Solution

     

  7. Evaluate the following limits: solution
  8.  (a)  \( \displaystyle{\lim_{x \to 1/2} \left(\cos(\pi x)-e^{x-\frac{1}{x}} \right)} \)    (b)  \(\displaystyle{\lim_{x \to -1} \frac{x^2-x-2}{7x+7} } \)    (c) \(\displaystyle{\lim_{h \to 0} \frac{\sqrt{16+h}-4}{h} } \)      (d) \(\displaystyle{\lim_{x \to 0} \dfrac{\frac{1}{x+4}-\frac{1}{4}}{x} } \)     (e) \(\displaystyle{\lim_{x \to \infty} \frac{3x^5+5x+2}{2x^5-2x^3+1} } \)

     

  9. Evaluate the limits or state that they do not exist. solution
  10. (a)  \( \displaystyle{\lim_{x \to 2^-} \frac{|x-2|}{(2x-4)}} \)  (b) \( \displaystyle{\lim_{x \to 2^+} \frac{|x-2|}{(2x-4)}} \)  (c) \( \displaystyle{\lim_{x \to 2} \frac{|x-2|}{(2x-4)}} \)

     

  11. Find an equation of the tangent line to the curve \( y=\sqrt{x} \) at \( x=1 \). Write your answer in the slope-intercept form: \( y=mx+b\).  Note that the derivative of  \( y=\sqrt{x} \) is given by  \( y'=\frac {1}{2\sqrt{x}} \).   solution
  12. Find the limit if it exists.   solution
  13. (a) \(\displaystyle{\lim_{x \to \infty} e^{x-x^2} } \)   (b) \(\displaystyle{\lim_{x \to 2^-} \frac{1}{x-2} } \)   (c) \(\displaystyle{\lim_{x \to 1} \frac{1}{x-1} } \)

  14. Determine whether each statement below is true or false. If the statement is true briefly explain why. If the statement is false, provide a counterexample or sketch a graph.
  15. (a) If both the left-hand limit and right-hand limit of a function at a number exist, then the function is continuous at that number.

    (b) If a function is continuous at a number then it is differentiable at that number.

    (c) If a function is discontinuous at a number then the function is undefined at that number.

    Solution

     

  16. Given that \( f \) is differentiable at \( x=1\). Which of the following must be true?  Solution


  17. I. \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x)\),

    II. \(f'(1)=\infty\),

    III. \(\lim_{x \to 1} f(x) = f(1) \).

    (a) I and II   (b) II and III  (c) I and III  (d) III only  (e) all