-  Evaluate each expression without using a calculator.  solution
(a) \((-3)^{4}\)   (b) \(-3^{4}\)   (c) \(3^{-4}\)   (d) \(\frac{5^{23}}{5^{21}}\) (e) \(\left(\frac{2}{3}\right)^{-2}\)  (f) \(16^{-3 / 4}\)
 
- Simplify each expression. Write your answer without negative exponents. solution
 (a) \(\sqrt{200}-\sqrt{32}\)    (b) \(\left(3 a^{3} b^{3}\right)\left(4 a b^{2}\right)^{2}\)  
  (c) \(\left(\dfrac{3 x^{3 / 2} y^{3}}{x^{2} y^{-1 / 2}}\right)^{-2}\)
- Expand and simplify. solution
(a) \(3(x+6)+4(2 x-5)\)   (b) \((x+3)(4 x-5)\)   (c) \((\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})\)  
(d) \((2 x+3)^{2}\)  (e) \((x+2)^{3}\)
- Multiply or divide to simplify as a sum/difference of terms.  solution
(a) \( \sqrt{x} (x^2-1) \)     (b) \(\dfrac{\sqrt{x}+x}{x^2} \)     (c) \(\dfrac{t^2-3t+\sqrt[3]t}{\sqrt{t}} \) 
- Factor the expression.  solution
(a) \(x^2+3x  \)   (b) \(2x^3+4x \)   (c) \( x^3-4x \)   (d)  \( x^3+9x \)   (e) \(x^2-5x+6 \)   (f) \(x^2-x-6 \) 
 
-  Factor the expression.   solution
 (a) \(x^2+7x+3 \)   (b) \(x^2-x-6 \)   (c) \(6x^2+x-1\)   (d) \(3x^2-14x+8 \) 
	  
	  
	
	
- Solve the following equations.   solution
(a) \(1-\dfrac{1}{x^2}=0 \)   (b) \(\sqrt{x-1}+3=5 \)   (c) \(\sqrt{x}+2=x \)   (d) \(|2x-3|=4 \)
- Simplify the rational expression. solution
 (a) \(\dfrac{x^{2}+3 x+2}{x^{2}-x-2}\)     (b) \(\dfrac{2 x^{2}-x-1}{x^{2}-9} \cdot \dfrac{x+3}{2 x+1}\)   
 (c) \(\dfrac{\frac{y}{x}-\frac{x}{y}}{\frac{1}{y}-\frac{1}{x}}\)
-  Simplify each expression.  solution
 (a) \(\dfrac{x^3-9x}{2x-6}\)     (b) \(\dfrac{\frac{1}{2+h}-\frac{1}{2}}{h} \)     (c) \(\displaystyle{ \frac{(5+h)^2-25}{h}} \) 
- Rationalize the numerator.  solution
(a) \(\dfrac{\sqrt{9+h}-3}{h} \)    (b) \(\dfrac{\sqrt{x}-2}{x-4}\)
-  Let \( f(x)= \sqrt{3x+4} \) and \( g(x)=2x^2-3 \). Evaluate the following.  solution 
 (i) \( (f \circ g)(x)\)     (ii) \( (f \circ f)(0)\)     (iii) \( g(f(x))\)     (iv) \( (g \circ f)(-1)\).
-  Consider the function \(h(x)\). Find non-identity functions \(f(x)\) and  \(g(x)\) such that \(h(x)=f(g(x))\).  solution
(i) \(h(x)=\sqrt[3]{2x+5}\)   (ii) \(h(x)=\dfrac{2}{(3x-7)^2}\)  (iii) \(h(x)=e^{1+x^2} \)   
- Evaluate the  difference quotient as indicated.
 (a) \( \dfrac{f(a+h)-f(a)}{h}\)   for   \( f(x)=x^2\)  solution
 (b) \( \dfrac{f(4+h)-f(4)}{h}\)   for   \( f(x)=\sqrt{x}\) solution
 (c) \( \dfrac{f(x+h)-f(x)}{h}\)   for   \( f(x)=\dfrac{1}{\sqrt{x}}\)  solution