Piecewise Functions
1. If \( f(x)=\begin{cases} 2x-7,
\quad x
\geq 0,
\\ \sqrt{5-2x}, \quad x < 0,
\end{cases} \) and \(g(x)=\begin{cases}
x^2-x+1, \quad x < 1, \\ |2x-3| , \quad
x \geq 1, \end{cases} \) evaluate the following:
solution
(a) \(f(-2)\) (b) \(g(-3)\)
(c) \(g(1)\) (d) \(f(5)\)
(e) \(g(0)\) (f)
\(g(3)\)
2. If \(g(x)=\begin{cases} 2x+5, \quad x < 1\\
4-2x, \quad x \geq 1. \end{cases} \) Find the
following: solution
(a) \( g(0) \)
(b) \(g(-1)\) (c) \( g(5) \)
(d) sketch the graph of \(y=g(x)\)
(e) the domain and range of \(g\) from the graph.
3. Suppose the tax liability \(T \) on \(x\) dollars of taxable
income is given by
\(T(x)=\begin{cases}
0.06x \qquad \qquad \quad \text{if} \,
\,
0 < x < 30,000,\\
1,800+0.04x \qquad \text{if} \, \, 30,000
\leq x < 80,000,\\
5,000+0.05x \qquad \text{if} \, \, x \geq 80,000.
\end{cases}\)
Find the tax liability on each taxable income.
solution
(a) \(\displaystyle{\$25,000}\)
(b) \(\displaystyle{\$125,000}\)
(c) \(\displaystyle{\$60,000}\)