Logarithmic Functions
1. Find the exact value of the logarithm. (a) \(\log_5 \sqrt[3] 5 \)
(b) \(\log_2(\log_3 81) \) (c) \(\log_5(\log_7 7) \)
solution
2. Write the following in expanded form. Where possible,
evaluate the log expressions.
solution
(a) \(\displaystyle{\ln [x(x+5)]} \) (b) \(\displaystyle{ \log_2 \frac{x^4}{8} }\) (c) \(\displaystyle{ \log_7 \frac{\sqrt 7}{x^3} }\) (d) \(\displaystyle{ \ln \frac{2e^2}{3}}\)
3. Write the following in condensed form.
solution
(a) \(\displaystyle{ \log x + 2 \log y}\)
(b) \(\displaystyle{ 2\ln x - 5\ln(x^2 + 1) }\)
(c) \(\displaystyle{ 2\ln x - \frac{1}{2} \ln(x^2 + 1) }\)
(d) \(\displaystyle{ 3\log_5(3x + 10) - 2\log_5(x^2 - 4x) +
4\log_5(z)}\)
4. Solve the following equations.
(a) \(\log_2 (3x-1) = 3 \)
solution
(b)
\(\log_5(3x-2)=2 \) solution
(c) \( \log (x^2-7x+11) = 0 \)
solution
(d) \( \displaystyle{\log_3\left( \frac{x+1}{x-2}\right) = 1}\)
solution