Sec 2.1: Functions
1. Evaluate the function \( f(x) = x^2-7x+8\) at the given values of the independent variable and simplify. solution
(a) \( f(-2) \) (b) \( f(x+1) \) (c) \( f(-x) \)
2. Find the domain of the following functions in interval notation. solution
(a) \( \displaystyle{f(x)=\frac{3}{x+2}} \) (b) \(\displaystyle{f(x)=\frac{x^2+9}{x^2-9}}\) (c) \(\displaystyle{f(x)=x^2-x+1}\) (d) \( \displaystyle{ f(x)= \frac{2}{\sqrt{4-x^2}} }\) (e) \(\displaystyle{ f(x)= \frac{\sqrt{4-2x}}{x+5}}\)
3. Evaluate the difference quotient as indicated.
(a) \( \dfrac{f(a+h)-f(a)}{h}\) for \( f(x)=x^2\) solution
(b) \( \dfrac{f(4+h)-f(4)}{h}\) for \( f(x)=\sqrt{x}\) solution
(c) \( \dfrac{f(x+h)-f(x)}{h}\) for \( f(x)=\dfrac{1}{\sqrt{x}}\) solution
4. Given \( f(x)=5x-7 \). Evaluate \(\dfrac{f(1+h)-f(1)}{h} \). solution
5. Find the difference quotient \(\dfrac{f(4+h)-f(4)}{h} \) and simplify for the function \( f(x)=\sqrt{x}\). solution
6. Find the difference quotient \(\dfrac{f(a+h)-f(a)}{h}\) and simplify for the function \(f(x)=3x^2-5x \). solution