Composite Functions
1. Let \( f(x)= \sqrt{x+1} \) and \( g(x)=2x-7 \). Find (i)
\( f + g\), (ii) \(f - g\), (iii) \(f \cdot g\), and
(iv) \(\frac{f}{g}\) and state their domains.
solution
2. The functions \( f(x)= 2x-1 \) and \( g(x)=2x^2-5 \) are
given. Find each of the given values. (i) \( (f + g)(-1) \),
(ii) \((f - g)(0)\), (iii) \((f \cdot g)(2)\), and (iv)
\(\left(\frac{f}{g}\right)(1)\).
solution
3. The functions \( f(x)= \frac{2}{x+1} \) and \(
g(x)=\frac{x}{x+1} \) are given. Find each of the given values. (i)
\( (f + g)(0) \), (ii) \((f - g)(3)\),
(iii) \((f \cdot g)(2)\), (iv) \(\left(\frac{f}{g}\right)(1)\) and
(v) \(\left(\frac{g}{f}\right)(-2)\).
solution
4. Let \( f(x)= 2x+1 \) and \( g(x)=2x^2-3 \). Evaluate (i)
\( (f \circ g)(-1)\), and (ii) \( (f \circ f)(0)\).
solution
5. The functions \( f(x)= \frac{2}{x-1} \) and \(
g(x)=\frac{4}{x} \) are given. Evaluate \(f \circ g \) and
find its domain. solution
6. The functions \( f(x)= 3-2x \) and \( g(x)=\sqrt{2x-3} \)
are given. Evaluate \(g \circ f \) and find its domain.
solution
7. Use the table to evaluate the composite functions. solution
\(x\) |
1 |
2 |
3 |
4 |
\(f(x)\) |
2 |
3 |
4 |
7 |
\(g(x)\) |
3 |
1 |
3 |
-10 |
\(h(x)\) |
3 |
3 |
1 |
-8 |
(a) \((f \circ g)(2)\) (b) \((h \circ h)(2)\) (c) \((g \circ f)(3)\) (d) \((g \circ h)(2)\) (e) \((h \circ g)(1)\) (f) \((g \circ h)(3)\)