Laws of Logarithms
1. Use the Laws of Logarithms to evaluate the expression. solution
(a) $\log(5)+\log(200)$ (b) $\log_6(108)+\log_6(12)$ (c) $\log_3(1161)-\log_3(43)$ (d) $\frac{1}{3}\log_4(64)$
2. Write the following in condensed form. solution
(a) \(\displaystyle{ \log x + 2 \log y}\)
(b) \(\displaystyle{ 2\ln x - 5\ln(x^2 + 1) }\)
(c) \(\displaystyle{ 2\ln x - \frac{1}{2} \ln(x^2 + 1) }\)
(d) \(\displaystyle{ 3\log_5(3x + 10) - 2\log_5(x^2 - 4x) +
4\log_5(z)}\)
3. Write the following in expanded form. Where possible, evaluate the log expressions.
solution
(a) \(\displaystyle{\ln [x(x+5)]} \) (b) \(\displaystyle{ \log_2 \frac{x^4}{8} }\) (c) \(\displaystyle{ \log_7 \frac{\sqrt 7}{x^3} }\) (d) \(\displaystyle{ \ln \frac{2e^2}{3}}\)